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Abstract

In this paper, we introduce a mixed finite element method on a staggered mesh for the

numerical solution of the steady state Navier-Stokes equations in which the two components

of the velocity and the pressure are defined on three different meshes. This method is

a conforming quadrilateral Q1 × Q1 − P0 element approximation for the Navier-Stokes

equations. First-order error estimates are obtained for both the velocity and the pressure.

Numerical examples are presented to illustrate the effectiveness of the proposed method.
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1. Introduction

It is well known that the simplest conforming low-order elements like the P1 − P0 (linear

velocity vector, constant pressure) triangular element and Q1 − P0 (bilinear velocity vector,

constant pressure) quadrilateral element are not stable when applied to the Navier-Stokes (NS)

equations [6]. Therefore, some special treatments are needed in order to keep the schemes stable.

During the last two decades, there has been a rapid development in practical stabilization

technique for the P1 − P0 element and the Q1 − P0 element for solving the NS equations

[1, 7, 8, 9, 11]. In [3], an economical finite element scheme is proposed to construct three finite-

dimensional subspaces for the two velocity components and the pressure. In [2], a mixed finite

element scheme for the Stokes equations is investigated. In this paper, we extend the idea in [3]

to construct a mixed finite element scheme for the NS equations, which is more efficient than

the scheme given in [3] as the degree of freedom is reduced. The optimal error estimate of this

scheme is obtained.

The outline of the paper is as follows. In the next section, we give a formulation of the

mixed finite element method for the Navier-Stokes equations. In Section 3, the error estimates

will be provided. In Section 4, two numerical examples will be considered. Finally, we end the

paper with a short concluding section.

2. A Mixed Finite Element Formulation for the NS Equations

We consider the following boundary value problem of the Navier-Stokes equations:






−ν∆u + (u · ∇)u + ∇p = f , in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω,

(2.1)
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Fig. 2.1. Quadrangulations: (a) Jh, (b) J
1
h , (c) J

2
h .

where Ω ⊂ R2 is a rectangular domain, ν is the viscosity, u = (u1, u2)
T represents the velocity

vector, p is the pressure, and f = (f1, f2)
T is the given body force. Let Hn(Ω) and H1

0 (Ω) denote

the standard Sobolev spaces with the norm ‖ · ‖n,Ω and ‖ · ‖1,Ω respectively. Furthermore, let

V ≡ H1
0 (Ω) × H1

0 (Ω), M ≡

{

q : q ∈ L2(Ω) and

∫

Ω

qdx = 0

}

.

Then the boundary value problem (2.1) is reduced to the following equivalent variational prob-

lem [3]:







Find u ∈ V and p ∈ M, such that

a(u,v) + a1(u;u,v) + b(v, p) = (f ,v) ∀v ∈ V,

b(u, q) = 0 ∀q ∈ M,

(2.2)

where

a(u,v) = ν

∫

Ω

∇u · ∇vdx,

a1(w;u,v) =
1

2

2
∑

i,j=1

∫

Ω

wj

( ∂ui

∂xj

vi −
∂vi

∂xj

ui

)

dx,

b(v, q) = −

∫

Ω

qdiv vdx, (f ,v) =

∫

Ω

f · vdx.

For simplicity we assume that the domain Ω is a unit square, but the finite element method

discussed below can be easily generalized to include the case that the domain Ω is rectangular.

Let N be a given integer and h = 1/N . We shall construct the finite-dimensional subspaces of

V and M by introducing three different quadrangulations Jh, J 1
h , J 2

h of Ω. First we divide Ω

into equal squares

Ti,j =
{

(x1, x2) : (x1)i−1 ≤ x1 ≤ (x1)i, (x2)j−1 ≤ x2 ≤ (x2)j

}

, i, j = 1, · · · , N,

where (x1)i = ih and (x2)j = jh. The corresponding quadrangulation is denoted by Jh. Then

for all Ti,j ∈ Jh we connect all the midpoints of the vertical sides of Ti,j by straight line

segments if the midpoints have a distance h, and extend the resulting mesh to the boundary

Γ. Then Ω is divided into squares and rectangles, and the corresponding quadrangulation is

denoted by J 1
h . Similarly, for all Ti,j ∈ Jh we connect all the midpoints of the horizontal sides

of Ti,j by straight line segments if the midpoints have a distance h, and extend the resulting

mesh to the boundary Γ. Then we obtained the third quadrangulation of Ω, which is denoted

by J 2
h (see Fig. 2.1).


