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Abstract

The main aim of this paper is to study the convergence properties of a low order mixed

finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic

convergence and superconvergence independent of the aspect ratio. Without the shape

regularity assumption and inverse assumption on the meshes, the optimal error estimates

and natural superconvergence at central points are obtained. The global superconvergence

for the gradient of the velocity and the pressure is derived with the aid of a suitable

postprocessing method. Furthermore, we develop a simple method to obtain the superclose

properties which improves the results of the previous works.

Mathematics subject classification: 65N30.

Key words: Mixed finite element, Stokes problem, Anisotropic meshes, Superconvergence,

Shape regularity assumption and inverse assumption.

1. Introduction

There have been many studies for the mixed finite elements approximation to the stationary

Stokes problem [10, 15, 16, 21, 25] which satisfy the Babus̆ka-Brezzi condition (see, e.g., [5, 11]).

The optimal error estimates were obtained under the shape regularity assumption [9, 14] on the

meshes. However, the solution of the Stokes problem may have anisotropic behavior in parts

of the domain, for instance, the presence of boundary layers and other localized features. This

means that the solution varies significantly in certain directions with less significant changes

along the other ones. It is an obvious idea to reflect this anisotropy in the discretization by

using anisotropic meshes with a small mesh size in the direction of the rapid variation of the

solution and a larger mesh size in the other direction, where elements are aligned to follow (in

some sense) the geometry of the solution. Compared with the standard isotropic techniques,

the number of degrees of freedom required for a given accuracy may be considerably reduced.

Recently, some efforts have been made to develop stable mixed methods for the meshes

that include elements of arbitrary high aspect ratio. For instance, Schötzau et al. [23, 24] for

Qk+1 −Qk−1 families, Becker and Rannacher [6, 7] for Q1 −Q0,Q1 −Q1, Apel and Nicaise [3]

for Q̃1 −Q0. By Q1 we denote, as usual, the space of bilinear functions, and by Q̃1 the rotated
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Q1 element. All the methods developed in the above works used high aspect ratio meshes,

although most of them placed some restrictions on the meshes. For the stability of the method

it is required that the discrete spaces satisfy the Babus̆ka-Brezzi condition with a constant (inf-

sup constant) independent of the aspect ratio of the elements. It has been reported by Russo

that the mini element becomes instable on anisotropic meshes (cf. [22]). As to the estimate

of the interpolation error under anisotropic meshes, Apel [1, 4, pp.35-38] presented a criterion

to judge the anisotropy of an interpolation; Chen et al. developed an anisotropic interpolation

theorem in [12, 13, 27, 28], which is much easier to use. In this work, we consider another

familiar scheme which can be regarded as a low order Bernardi-Raugel element (cf. [8]) under

anisotropic rectangular meshes. Recently, the stability of this scheme with the inf-sup constant

independent of the aspect ratio has been discussed by Apel and Nicaise in [2]. We check the

anisotropy of the interpolation of velocity, and then the optimal error estimates can be obtained

by using the anisotropic interpolation theorem.

On the other hand, the superconvergence for the mixed elements is very effective in practice.

Some superconvergence results for several mixed finite elements have been obtained when the

meshes are sufficiently good. Lin and Pan in [20] and [18] proved O(h2)-superconvergence for

the Q1 − Q0 element under square meshes and O(h3)-superconvergence for the biquadratic-

linear element over uniform rectangular meshes, respectively. On quasi-uniform rectangular

meshes, the O(h2)-superconvergence for the Bernardi-Raugel element was obtained by [18]. A

key concept in their derivation is the integral identity technique which has been proven to be

an efficient tool for the superconvergence analysis of rectangular finite elements (cf. [17, 19]).

In this paper, a simple method is developed to obtain the superclose results. The basic tool

employed by us is the well-known Bramble-Hilbert Lemma. Furthermore, compared with the

previous works, our results can be worked without the shape regularity assumption and inverse

assumption requirement on the meshes and can be applied to more general meshes.

The paper is organized as follows: we investigate the anisotropic interpolation properties of

the Bernardi-Raugel element in Section 2. In Section 3, based on the stability of this scheme

with the inf-sup constant independent of the aspect ratio, which has been obtained in [2], we get

the optimal anisotropic error estimates. Without the shape regularity assumption and inverse

assumption requirement on the meshes, the superclose result and globalO(h2)-superconvergence

of the Bernardi-Raugel element are obtained under rectangular meshes in Section 4 and Section

5, respectively. Finally, natural superconvergence at central points is derived in Section 6.

2. Some Notations and Basic Estimates

In this section, we introduce some notations and recall some estimates that are basic for our

subsequent arguments.

For the sake of convenience, let Ω ⊂ R2 be a convex polygon composed by a family of

rectangular meshes Jh which need not satisfy the shape regular conditions. ∀K ∈ Jh, we denote

the barycenter of the element K by (xK , yK), the length of edges parallel to x-axis and y-axis

by 2hK1, 2hK2 respectively, hK = max{hK1, hK2}, h = maxK∈Jh
hK , hα

K = hα1

K1h
α2

K2. Assume

that K̂ = [−1, 1] × [−1, 1] is the reference element, the four vertices are: â1 = (−1,−1), â2 =

(1,−1), â3 = (1, 1), â4 = (−1, 1), and its 4 sides are l̂1 = â1â2, l̂2 = â2â3, l̂3 = â3â4, l̂4 = â4â1.

Then there exists a unique mapping FK : K̂ → K defined as
{

x = xK + hK1ξ,

y = yK + hK2η.
(2.1)


