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Abstract

This paper addresses fully space-time adaptive magnetic field computations. We de-

scribe an adaptive Whitney finite element method for solving the magnetoquasistatic for-

mulation of Maxwell’s equations on unstructured 3D tetrahedral grids. Spatial mesh re-

finement and coarsening are based on hierarchical error estimators especially designed for

combining tetrahedral H(curl)-conforming edge elements in space with linearly implicit

Rosenbrock methods in time. An embedding technique is applied to get efficiency in

time through variable time steps. Finally, we present numerical results for the magnetic

recording write head benchmark problem proposed by the Storage Research Consortium

in Japan.
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1. Introduction

The magnetoquasistatic approximation (MQS) arises from Maxwell’s equations by dropping
the displacement current. This is reasonable for many electrical machines, generators and
transformers which work in the low-frequency high-conductivity range. Wave propagation can
then be neglected and vanishing tangential traces are used for artificial boundary conditions [18].

In this work we develop a fully adaptive algorithm to solve general three-dimensional non-
linear MQS problems. The local accuracy of the numerical solution is controlled by means of a
posteriori error estimates in space and time. In the past, computational electromagnetics has
mainly focused on efficiency by (i) applying advanced multigrid algorithm with optimal com-
plexity to solve large scale linear systems, e.g., [11, 17, 19, 28, 34], (ii) adapting spatial grids by
means of a posteriori error estimators [8,12,32,37], and to some extent by (iii) optimizing time
grids in accordance with local error control [13, 15, 16, 40]. An interesting alternative approach
is the goal-oriented weighted dual method [10]. Often, in addition, highly parallelized strategies

* Received November 30, 2007 / Revised version received June 26, 2008 / Accepted February 5, 2009 /



Adaptivity in Space and Time for Magnetoquasistatics 643

are applied. On the other side the reliability question, that is, how accurate is the numerical
solution computed, has received much less attention in MQS simulation.

There is nowadays an increasing emphasis on all aspects of adaptively generating a space-
time grid that evolves with the solution. Equally important is the development of efficient
higher-order one-step integration methods which can handle very stiff differential-algebraic elec-
tromagnetic problems and which allow us to accommodate a grid in each time step without
any specific difficulties. Combined space-time adaptivity is widely used in computational fluid
dynamics and thermodynamics, see, e.g., [39].

Recently, first investigations for space and time adaptive MQS solvers have been made in [42]
where first-order approximations in time and space are considered and in [41] where higher-order
embedded SDIRK-methods are used for first-order spatial discretizations. In [31] a new variable
step-size one-step Rosenbrock methods ROS3PL is coupled with lowest-order edge elements to
solve linear MQS problems. Here, we extent the latter approach to nonlinear material laws.
We wish to adaptively refine space-time grids in order to capture local effects efficiently and
reliably in accordance to imposed temporal and spatial tolerances. We apply the adaptive Rothe
method based on the discretization sequence first in time then in space, in contrast to the usual
Method of Lines approach (see, e.g., [29] and references therein). The spatial discretization
is considered as a perturbation of the time integration process. Implementations have been
done in the KARDOS library [2, 23], which provides a suitable programming environment for
adaptive algorithms to solve nonlinear time-dependent PDEs.

2. Problem Class

Introducing a vector potential A(x, t) for the magnetic induction B = ∇×A, we consider
the equations of magnetoquasistatics for isotropic materials in the form

σ∂tA+∇×
(
µ−1(|∇×A|)∇×A

)
= Js, in Ω× (0, T ],

A× n = 0, on ∂Ω× (0, T ],

A(·, 0) = A0, on Ω (2.1)

where σ is the scalar electric conductivity and Js(x, t) denotes the applied current density
which has to satisfy the consistency condition ∇ · Js = 0. The scalar magnetic permeability
µ is in general nonlinear and is defined by the material relation H = µ−1(|B|)B between the
magnetic field H and the magnetic induction B. Here, | · | stands for the usual Euclidean
vector norm. Due to physical arguments, the continuous function µ−1(s) : R+

0 → R+ satisfies
the following properties [35]:

0 < µ−1 ≤ µ−1(s) ≤ µ−1
0 for all s ,

f(s) = sµ−1(s) is strictly monotone and Lipschitz continuous, (2.2)

where µ0 =4π×10−7Hm−1 is the permeability in vacuum.
Since there may be insulating regions with σ = 0, system (2.1) is in general an elliptic-

parabolic initial-boundary value problem. The physically relevant quantities which can be
derived from A are the magnetic induction B =∇×A and the eddy current density JE =
−σ∂tA. The vector potential formulation (2.1) is widely used in electromagnetic computations
since it has no problems with multiple connected conductive domains. However, there are
two essential difficulties: the uniqueness of A in parts of the domain where σ = 0, and the


