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Abstract

This paper deals with the preconditioning of the curl-curl operator. We use H(curl)-

conforming finite elements for the discretization of our corresponding magnetostatic model

problem. Jumps in the material parameters influence the condition of the problem. We will

demonstrate by theoretical estimates and numerical experiments that hierarchical matrices

are well suited to construct efficient parallel preconditioners for the fast and robust iterative

solution of such problems.
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1. Introduction

A major field of occurrence of the curl-curl operator is computational electromagnetism. An
example is the ungauged vector potential based magnetostatic problem

curl
1
µ
curl u = j0 in Ω, (1.1a)

ut = 0 on ∂Ω, (1.1b)

which we choose as our model problem with given source current j0. For theoretical purposes
we assume that Ω ⊂ R3 is a convex (curved) polyhedron, while in pratice this property does not
seem to be required. We denote n as the exterior normal at the boundary ∂Ω and ut := u× n
as the tangential surface trace of the vector potential u. A typical setting to be simulated in
magnetostatics is shown in Fig. 7.1. The computational domain Ω = ΩC∪ΩI consists of different
materials that are characterized by their material parameters, i.e. their conductivity σ satisfying
0 ≤ σ(x) ≤ σ1 and their magnetic permeability µ := µr · µ0 ∈ L∞(Ω) with 1 ≤ µr(x) ≤ µ1/µ0

for some constants µ1, σ1 ∈ R and µ0 := 4π ·10−7 (Vs)/(Am). j0 vanishes in the non-conducting
domain ΩI .

The ungauged magnetostatic problem is singular, because any gradient field gradφ can
be added to the solution. The magnetic field B := curl u, which is the measurable physical
quantity of interest, is not affected by this alternative solution unew := u+ gradφ. The vector
potential u itself is not a measurable physical quantity.
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The ungauged vector potential based magnetostatic problem is a special case of the vector
potential based full Maxwell problem in frequency domain and temporal gauge

curl
1
µ
curl u + iω(σ + iωε)u = −(σ + iωε)gradϕ0. (1.2)

Herein, the electric permittivity is assigned by ε := εr·ε0 with εr ≥ 1, ε0 := 8.85·10−12 (As)/(Vm)
and ϕ0 denotes the scalar electric potential. The magnetostatic equation (1.1a) follows from
(1.2) in the case of vanishing angular frequency ω = 0. The operator that arises from the full
Maxwell problem is regular for all ω > 0, whereas the curl-curl operator has a large kernel.
Since the electromagnetic fields that emerge at low frequencies in the full Maxwell model are
a good approximation of magnetostatic fields, it can be expected that the operator (1.2) at
small frequencies is a good approximation for the operator (1.1). It is therefore an obvious
idea to regularize the ”magnetostatic operator” by adding a multiple of the identity. Hence, we
consider the operator

Lα := curl
1
µ
curl + αI (1.3)

with constant 1/µ1 ≤ α ∈ R as a preconditioner for the magnetostatic operator

L0 = curl
1
µ
curl.

One of the most established methods for the iterative solution of electromagnetic problems
are multigrid methods; see [1, 16]. Algebraic multigrid methods (AMG) can be applied if no
finite element (FE) grid hierarchy is available; see [26] and [8] for an improved version. However,
they lack a comprehensive theoretical analysis. A major difference of the method in [26] and
the method presented in this article is that we do not regularize the problem itself. We rather
use the regularized operator for generating preconditioners for the original problem (1.1), while
in [26] an approximate solution which depends on the regularization parameter α is computed.
See [18] for a preconditioning technique that relies on solvers for the discrete Poisson problem.
In this article we propose the usage of hierarchical matrices (H-matrices) [14, 15] due to their
robustness with respect to non-smooth coefficients in the differential operator.

Hierarchical matrices provide a setting in which approximations of fully populated matrices
(such as the inverse or the factors of the LU decomposition of sparse matrices) can be computed
with logarithmic-linear complexity. The existence of such approximations in the case of FE
discretizations was proved in [2, 4, 7] for general scalar elliptic boundary value problems. A
strategy that is also based on H-matrices was proposed in [27]. There, the discretization A of
L0 is regularized by adding UUT to A, where U is the matrix consisting of the kernel vectors
of A (the so-called discrete grad-div regularization).

After the introduction of appropriate spaces and the variational formulation of our problem
in Sect. 2, we will review hierarchical matrices in Sect. 3 in the context of nested dissection
reorderings; see [10]. In Sect. 4 we will lay theoretical ground to the H-matrix approximation
of the factors of the LU decomposition in the case of discretizations of the operator (1.3)
with Nédélec’s edge elements [24]. The regularization (1.3) guarantees that low-precision LU
factorizations can be computed in the methodology of hierarchical matrices, which can be used
for preconditioning. In Sect. 5 we will investigate the influence of the regularization parameter
α and the accuracy εH of the hierarchical matrix approximation on the condition number of
the preconditioned problem. In Sect. 6 it will be shown how the nested dissection structure
of the hierarchical LU decomposition can be exploited for parallelization. Finally, Sect. 7 will


