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Abstract

The numerical approximation of the Spectral-Lagrangian scheme developed by the au-

thors in [30] for a wide range of homogeneous non-linear Boltzmann type equations is

extended to the space inhomogeneous case and several shock problems are benchmark.

Recognizing that the Boltzmann equation is an important tool in the analysis of formation

of shock and boundary layer structures, we present the computational algorithm in Section

3.3 and perform a numerical study case in shock tube geometries well modeled in for 1D

in x times 3D in v in Section 4. The classic Riemann problem is numerically analyzed for

Knudsen numbers close to continuum. The shock tube problem of Aoki et al [2], where

the wall temperature is suddenly increased or decreased, is also studied. We consider the

problem of heat transfer between two parallel plates with diffusive boundary conditions for

a range of Knudsen numbers from close to continuum to a highly rarefied state. Finally,

the classical infinite shock tube problem that generates a non-moving shock wave is stud-

ied. The point worth noting in this example is that the flow in the final case turns from a

supersonic flow to a subsonic flow across the shock.
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1. Introduction

A gas flow may be modeled on either a microscopic or a macroscopic level. The macroscopic
model regards the gas as a continuum and the description is in terms of variations of the
macroscopic velocity, density, pressure and temperature with space and time. On the other
hand, the microscopic or molecular model recognizes the particulate structure of a gas as a
myriad of discrete molecules and ideally provides information on the position and velocity of
every molecule at all times. However, a description in such detail is rarely, if ever, practical and a
gas flow is almost invariably described in terms of macroscopic quantities. The two models must
therefore be distinguished by the approach through which the description is obtained, rather
than by the nature of the description itself. This paper is concerned with the microscopic
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approach and the first question which must be answered is whether this approach can solve
problems that could not be solved through the conventional continuum approach.

A gas at standard conditions (1 bar, 25oC) contains ca. 2.43 × 1016 particles per cubic
millimeter. Despite this huge number of individual particles, a wide variety of flow and heat
transfer problems can be described by a rather low number of partial differential equations,
namely the well known equations of Navier-Stokes. Due to the many collisions between par-
ticles which effectively distribute disturbances between particles, the particles behave not as
individuals, but as a continuum. Under standard conditions, a particle collides with the others
very often, about 109 times per second, and travels only very short distances between collisions,
about 5×10−8m. Both numbers, known as collision frequency ν and mean free path l0, depend
on the number density of the gas.

The macroscopic quantities at any point in a flow may be identified with average values of
appropriate molecular quantities; the averages being taken over the molecules in the vicinity
of the point. The continuum description is valid as long as the smallest significant volume
in the flow contains a sufficient number of molecules to establish meaningful averages. The
existence of a formal link between the macroscopic and microscopic quantities means that the
equations which express the conservation of mass, momentum and energy in the flow may be
derived from either approach. While this might suggest that neither of the approaches can
provide information that is not also accessible to the other, it must be remembered that the
conservation equations do not form a determinate set unless the shear stresses and heat flux
can be expressed in terms of the other macroscopic quantities. It is the failure to meet this
requirement, rather than the breakdown of the continuum description, that places a limit on the
range of validity of the continuum equations. More specifically, the Navier-Stokes equations of
continuum gas dynamics fail when gradients of the macroscopic variables become so steep that
their scale length is of the same order as the average distance traveled by the molecules between
collisions, or mean free path, l0. A less precise but more convenient parameter is obtained if the
scale length of the gradients is replaced by the characteristic dimension of the flow, Lflow. Flow
problems in which typical length scales Lflow are much larger than the mean free path l0, or in
which the typical frequencies ω are much smaller than ν, are well described through the laws
of Navier-Stokes. The Knudsen number Kn = l0/Lflow is the relevant dimensionless measure
to describe these conditions, and the Navier-Stokes equations are valid as long as Kn ¿ 1.

This condition fails to hold when the relevant length scale Lflow becomes comparable to the
mean free path l0. This can happen either when the mean free path becomes large, or when
the length Lflow becomes small. A typical example of a gas with large mean free path is high
altitude flight in the outer atmosphere, where the mean free path must be measured in meters,
not nanometers, and the Knudsen number becomes large for, e.g., a spacecraft. Miniaturization,
on the other hand, produces smaller and smaller devices, e.g., micro-electro-mechanical systems
(MEMS), where the length Lflow approaches the mean free path.

Moreover, the Navier-Stokes equations will fail in the description of rapidly changing pro-
cesses, when the process frequency ω approaches, or exceeds, the collision frequency ν. The
Knudsen number (Kn = ω/ν) is used to classify flow regimes as follows:

• Kn ¿ 1, i.e., Kn - 0.01: The hydrodynamic regime, which is very well described by the
Navier-Stokes equations.

• 0.01 - Kn - 0.1: The slip flow regime, where the Navier-Stokes equations can describe
the flow well, but must be supplied with boundary conditions that describe velocity slip
and temperature jumps at gas-wall interfaces (rarefaction effects).


