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Abstract

We present a new iterative reconstruction algorithm to improve the algebraic recon-

struction technique (ART) for the Single-Photon Emission Computed Tomography. Our

method is a generalization of the Kaczmarz iterative algorithm for solving linear systems

of equations and introduces exact and implicit attenuation correction derived from the

attenuated Radon transform operator at each step of the algorithm. The performances

of the presented algorithm have been tested upon various numerical experiments in pres-

ence of both strongly non-uniform attenuation and incomplete measurements data. We

also tested the ability of our algorithm to handle moderate noisy data. Simulation stud-

ies demonstrate that the proposed method has a significant improvement in the quality

of reconstructed images over ART. Moreover, convergence speed was improved and sta-

bility was established, facing noisy data, once we incorporate filtration procedure in our

algorithm.

Mathematics subject classification: 65F10, 65R32, 68U10, 92C55.

Key words: Single-photon emission computed tomography, Attenuated radon transform,

Algebraic reconstruction technique, Attenuation correction.

1. Introduction

1.1. The medical aspect

Single-Photon Emission Computed Tomography (SPECT) is a nuclear medical imaging
mechanism used to determine the concentration of some biologically active molecules in some
specific zone of a human body in terms of their activity distribution. Some radiopharmaceutical
product is first injected into the patient’s organ, with a Gamma-emitting isotope. The radiations
are trapped by a Gamma-camera with detectors which is materialized by an acquisition plane,
see Fig. 1.1, rotating about the patient along a grid of specific angles. The intensity of such
radiations is therefore measured in each direction orthogonal to the acquisition system plane in
various angular positions.

The measured quantities of traveling photons are the exponentially weighted averages of
the activity distribution along straight lines on their way from the source to the detector. The
reason for the exponential weight is the presence of a position-dependent attenuation coefficient
(see [12]) due to photon interaction with the organic tissue in which the radiations go through.
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1.2. The mathematical model

We will present here a two-dimensional model, so that the detector will be materialized
by a grid of collimators regularly spaced along a line C which modelizes the Gamma-camera.
Let (x, y) 7−→ f(x, y) denote the activity distribution and (x, y) 7−→ a(x, y) the position-
dependent attenuation coefficient. When the detector is positioned in order to register ra-
diations which propagate along lines L with direction θ⊥, the measured intensity g(θ, s(L))
corresponding to the radiation along such line distant from s = s(L) to the origin (the center
of the exploration zone) (see Figs. 1.1a and 1.1b), is given by the attenuated Radon transform
(θ, s) 7−→ Ra, θ[f ](s) defined as :

Ra,θ [f ](s) =
∫

〈(x,y), θ〉=s

exp
(
−

∫ +∞

0

a((x, y) + tθ⊥) dt
)

f(x, y) dλs,θ(x, y)

= g(θ, s). (1.1)

Here dλs,θ stands for the restriction of the Lebesgue area measure in R2 to the straight line
〈(x, y) , θ〉 = s, where

θ =
(

cos ϕ

sin ϕ

)
, θ⊥ =

( − sin ϕ

cosϕ

)
and 0 ≤ θ < ϕmax.

The unknown activity distribution is materialized in (1.1) by f . So the problem is to recover
f from the projections data g(θ, s), assuming of course some a priori information about the
tissue attenuation distribution a. When a is known, there are various direct (via analytic
formulas) or iterative techniques to recover f .

(a) (b)
Fig. 1.1. Scanner

1.3. Previous inversion methods

Direct analytic methods lie on explicit exact inversion formulas for the attenuated Radon
transform. When a ≡ 0, the problem is solved by the classical Radon inversion formulas in
dimension two (see Natterer [15] and Quinto [18] for more details about Radon’s inversion
formulas). When the attenuation tissue distribution a remains constant on the support of
f , then the attenuated Radon transform is reduced to the exponential Radon transform, for
which Tretiak and Metz [23] suggested an exact inversion formula. Nevertheless, none of these
analytical methods is accurate respect to the reconstruction of f in case of an arbitrary strongly
non-uniform attenuation tissue distribution, which is usually the case in any realistic SPECT
problem. Novikov [17] discovered an exact analytical inversion formula for the attenuated
Radon transform when a is an arbitrary tissue attenuation distribution. Another derivation of


