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Abstract

In this work, a new numerical scheme is proposed for thermal/isothermal incompressible

viscous flows based on operator splitting. Unique solvability and stability analysis are

presented. Some numerical result are given, which show that the proposed scheme is

highly efficient for the thermal/isothermal incompressible viscous flows.
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1. Introduction

For the time-dependent thermal and isothermal incompressible viscous flow governed by the

Boussinesq and the Navier-Stokes equations, the numerical approximation requires the deter-

mination of the fluid’s velocity, pressure and temperature. A direct approximation technique

requires the solution of a very large nonlinear system of equations at each time step. The

fractional step θ-method, developed by Glowinski in [1], is an appealing numerical approxima-

tion technique [2–4]. It updates the velocity/pressure and temperature using several sub-steps,

which leads to decoupling the difficulties associated with the non-linearities and incompress-

ibility condition, thereby reducing the size of the algebraic systems at each sub-step.

In the last decades, a number of numerical methods have been proposed for the numerical

simulation of thermal/isothermal incompressible viscous flows. In [5, 6], the numerical simula-

tion is performed in the stream function-vorticity formulation. Hortmann et al. [7] considers

the same problem, but solves it with finite volumes in primitive variables for the stationary

case. Le Qurin [8] provided accurate transient solutions at high Rayleigh number by using

pseudo-spectral discretization with Chebyshev polynomials. In [9], numerical schemes for time-

dependent incompressible viscous fluid flow, thermally coupled under the Boussinesq approx-

imation, are presented. The schemes combine an operator splitting in the time discretization

and linear finite elements in the space discretization.

In this paper, a new numerical scheme is proposed, which combines an θ scheme in time

discretization and linear finite elements in the space discretization. The unique solvability and

stability analysis of the proposed scheme are presented. Numerical experiments show that the

scheme is efficient for simulating of thermal/isothermal incompressible viscous flows.

The remainder of this paper is organized as follows: in the next section, the mathematical

model and some basic notation are introduced. In Section 3, we describe the fractional step

θ-time stepping scheme which consists of three steps in each interval of time and a detailed

description of the numerical solution of the subproblems is present. In Section 4, the unique
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solvability is presented. In Section 5, the proof of stability of the fractional step θ scheme is

given. In Section 6, some numerical result are given to illustrate the theoretical results. Some

concluding remarks are given in the final section.

2. The Mathematical Model

Under the well-known Boussinesq approximation, the time-dependent flow is governed by

the non-dimensional equations
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∂u

∂t
− ν △ u+ (u · ▽)u+ ▽p = λgT,

▽ · u = 0,

∂T

∂t
− ξ∆T + (u · ▽)T = 0,

(2.1)

where x ∈ Ω ⊂ Rn (n=2, 3), Ω is a bounded region in Rn with a sufficiently regular boundary

∂Ω. The unknowns are the vector function u (velocity), the scalar function p (pressure) and the

scalar function T (temperature). The dimensionless parameters Re,Ra, Pr are the Reynolds,

Rayleigh and Prandtl number, respectively. g is the gravity vector g = (0, 1), ν = 1/Re is the

viscosity, and we also define λ = (Ra)/(PrRe2), ξ = 1/(RePr).

For the sake of completeness, Eqs. (2.1) should be supplemented with appropriate initial

and boundary condition:
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u(x, 0) = u0(x), x ∈ Ω (∇ · u0 = 0),

T (x, 0) = T0(x), x ∈ Ω,

u = 0, on∂Ω,

T = T0, on∂Ω,

(2.2)

Remark 2.1. It follows from [10] that

(1) The coupling between the first and the third equation in (2.1) involving Re corresponding

to mixed convection. For natural convection, Re = 1 is taken.

(2) For the Navier-Stokes equations, there is no coupling with the thermal energy equation,

and the right hand side of the first formula in (2.1) involves a concentration of external

forces f independent of T . Consequently, it is independent of parameters Ra, Pr and Re.

Next, we will introduce some notations and results which will be frequently used in this

paper. Let (·, ·), ‖ · ‖ denote, the inner product and norm on L2(Ω) or L2(Ω)n, respectively.

The spaces H1
0 (Ω) and H

1
0 (Ω)

n are equipped with their usual norm:

‖u‖21 =
∫

Ω

|∇u(x)|2dx.

The norm in Hs(Ω) will be denoted by ‖ · ‖s. We also use 〈·, ·〉 to denote the duality between

H−s(Ω) and Hs
0(Ω) for all s > 0.


