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Abstract. In this paper, we are presenting a proposal for new modified algorithms
for RRGMRES and AGMRES. It is known that RRGMRES and AGMRES are viable
methods for solving linear discrete ill-posed problems. In this paper we have fo-
cused on the residual norm and have come-up with two improvements where suc-
cessive updates and the stabilization of decreases for the residual norm improve
performance respectively. Our numerical experiments confirm that our improved
algorithms are effective for linear discrete ill-posed problems.
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1 Linear dicrete ill-posed problems

Recently it is tried to use GMRES methods for linear discrete ill-posed problems (LDIP).
Conjugate gradient method and SVD is also applied to solve them, but we focus on the
GMRES methods for LDIP in this paper. As an introduction, we will shortly describe
the LDIP. The details of the GMRES methods for them are taken up in later sections.

Hansen [5], which is a good introduction to discrete ill-posed problems (LDIP), says
that the LDIP arise from the discretization of ill-posed problems such as the first kind
of Fredholm integral equation. The first kind of Fredholm integral equation

∫ 1

0
K(s, t) f (t)dt = g(s), 0 ≤ s ≤ 1, (1.1)
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where the right-hand side g(s) and the kernel K are known, but f is unknown, is one
of inverse problems. We obtain ”input” from ”output” when we deal with inverse
problems. After descretizing (1.1), a linear system like

Ax = b, (1.2)

where A ∈ Rn×n, x, b ∈ Rn, is derived. The coefficient matrix A appeared from the
LDIP is generally ill-conditioned, because it has clustered tiny singular values or sin-
gular values decaying to zero. The right-hand side vector in (1.2) represents the ”out-
put”, so it often includes measurement errors. Then the known right-hand side vector
is

b̄ = b + berror. (1.3)

Since usually we don’t know b, berror, the approximate solution is written as

x̄∗ = arg min
x̄j, j≥0

‖x̄j − x‖, (1.4)

in which x̄j, j ≥ 0 is generated in j steps of the GMRES methods. When the size of LDIP
is small, the analogous of SVD are used for them. However, some iterative methods
such as the CG method [5, 6, 8] and the GMRES meshod [1–3] are applied to the large
scale LDIP for regularization.

2 GMRES methods for LDIP

The GMRES method by Saad and Shultz [10] is one of the popular iterative methods
for the linear system like (1.2) In particular the method works well when the coefficient
matrix A is non-symmetric. The GMRES generates an approximate solution whose
residual norm is minimum by using a Krylov subspace as follow.

‖b− Axj‖2 = min
x0+Kj(A,r0)

‖b− Ax‖2, (2.1)

Kj(A, r0) = span{r0, Ar0, . . . , Aj−1r0}, (2.2)

where j is the iteration number, x0 is the initial guess and r0 = b− Ax0 is the initial
residual.

One of the GMRES methods for solving LDIP is the Range Restricted GMRES
(RRGMRES) method by Calvetti et al. [2]. This method restricts the Krylov subspace
to generating an approximate solution within the range of coefficient matrix A. The
least squares problem is solved as follows:

‖b− Axj‖2 = min
x0+K (A,Ar0)

‖b− Ax‖2, (2.3)

Kj(A, r0) = span{Ar0, A2r0, . . . , Ajr0}. (2.4)


