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Abstract. In this paper, we applied the polyharmonic splines as the basis functions
to derive particular solutions for the differential operator ∆2 ± λ2. Similar to the
derivation of fundamental solutions, it is non-trivial to derive particular solutions
for higher order differential operators. In this paper, we provide a simple algebraic
factorization approach to derive particular solutions for these types of differential
operators in 2D and 3D. The main focus of this paper is its simplicity in the sense
that minimal mathematical background is required for numerically solving higher
order partial differential equations such as thin plate vibration. Three numerical
examples in both 2D and 3D are given to validate particular solutions we derived.
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1 Introduction

The idea of splitting a given partial differential equation into solving a homogeneous
equation and an inhomogeneous equation is well known. In recently years, such ap-
proach becomes very popular for various boundary meshless methods such as the
Trefftz method, the method of fundamental solutions [8, 9], and the boundary knot
method (BKM) [4], etc. By evaluating the particular solution, these boundary mesh-
less methods can be extended from solving only homogeneous equations to inho-
mogeneous equations and time-dependent problems [1, 9]. As a consequence, many
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numerical techniques have been developed to evaluate particular solutions for vari-
ous types of partial differential equations. Chen and Rashed [2] were first to extend
the derivation of particular solutions to Helmholtz-type equations using thin plate
splines. Muleshkov et al. [11] further extended the concept to polyharmonic splines.
However, the derivation of particular solutions using the annihilator method and al-
gebraic techniques in [11] were too tedious to use for solving complicated differential
operators. Cheng [6] revisited the problem using the technique of fundamental so-
lutions so that particular solutions can be easily derived. Recently, Muleshkov and
Golberg [12], and Chen et al. [3] derived particular solution for more complicate dif-
ferential operators using radial basis functions and Chebyshev polynomials. In 2009,
Tsai et al. [13] extended the derivations of particular solutions to polyharmonic, poly-
Helmholtz operators and their products.

In contrast to the tedious derivation of particular solutions for Helmholtz-type
differential operators shown in [11] and its extension to general operators [13], we
propose a simple algebraic factorization approach to derive particular solutions for
the differential operators

∆2 ± λ2,

in 2D [5] and 3D using polyharmonic splines. On the other hand, Young et al. [14]
solved the homogeneous equation of plate vibration problem in which ∆2−λ2 is the
differential operator. Coupled with the particular solutions derived in this paper, [14]
can be effectively extened to solving the arbitrarily loaded flexural vibrations of an
uniform thin plate.

This paper is organized as follows. In section 2, we derive particular solutions for
polyharmonic splines which includes two dimensional and three dimensional cases.
In Section 3, we derive particular solutions for the monomial term for ∆2−λ2. In Sec-
tion 4, numerical examples for two 2D examples and one 3D example are given. In
Section 5, we conclude this paper with opening issues and future applications.

2 Particular solutions for polyharmonic splines

Let us consider the following boundary value problem
(
∆2 − λ2) u = f (x), x ∈ Ω ⊂ Rd, (2.1)
B1u = g(x), x ∈ ∂Ω, (2.2)
B2u = h(x), x ∈ ∂Ω, (2.3)

where λ is a non-zero constant, ∆ is the Laplacian, B1 and B2 are the boundary dif-
ferential operators, f , g and h are given functions, and Ω is an open bounded domain
in Rd, d=2, 3, with boundary ∂Ω. Note that x=(x, y) in 2D and x=(x, y, z) in 3D. For
d=2, (2.1)–(2.3) govern the loaded flexural vibrations of a uniform thin plate.

Let up be a particular solution of the governing equation, then it satisfies
(
∆2 − λ2) up = f (x), (2.4)


