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Abstract. Lattice-Boltzmann (LB) simulations are a common tool to numerically
estimate the permeability of porous media. For valuable results, the porous struc-
ture has to be well resolved resulting in a large computational effort as well as
high memory demands. In order to estimate the permeability of realistic samples,
it is of importance to not only implement very efficient codes, but also to choose
the most appropriate simulation setup to achieve accurate results. With the focus
on accuracy and computational effort, we present a comparison between different
methods to apply an effective pressure gradient, efficient boundary conditions, as
well as two LB implementations based on pore-matrix and pore-list data structures.
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1 Introduction

The lattice-Boltzmann (LB) method is a numerical scheme that is able to simulate the
hydrodynamics of fluids with complex interfacial dynamics and boundaries [1–6]. Its
popularity stems from the broad field of possible application and a fair implemen-
tation effort compared to other CFD methods. Unlike schemes that are based on a
discretization of the Navier-Stokes equations and therefore represent balance equa-
tions at the continuum level (macroscopic), the LB method represents the dynamics at
mesoscopic level by solving the discretized Boltzmann equation.

There is an increasing interest in the LB method for simulation of flow in complex
geometries since the end of the 1980’s [7] when hydrodynamic simulation methods
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were dominated by finite element schemes that solved the Stokes equation [8,9]. With
the advent of more powerful computers it became possible to perform detailed sim-
ulations of flow in artificially generated geometries [10], tomographic reconstructions
of sandstone samples [11–15], or fibrous sheets of paper [16]. An important property
estimated using the LB method in those geometries is the permeability [17] and since
the porous structure has to be well resolved in order to obtain valuable results, a large
computational effort as well as large amounts of memory are required. Therefore, it is
important to develop very efficient simulation paradigms.

Different alternative simulation setups have been proposed for permeability esti-
mation which differ in the computational domain setup, boundary conditions (BC),
how the fluid is driven, or how an effective pressure gradient is being estimated. Fur-
ther possible differences include the choice between single relaxation and multirelax-
ation time lattice Boltzmann implementations or data structures based on a 3D array
containing the whole discretized simulation volume including rock matrix and pore
space (pore-matrix) in contrast to data structures limited to a connected list of pore
nodes (pore-list) [6, 18].

The current paper focuses on a detailed comparison of some of these possible im-
plementation details to accurately estimate the permeability of porous media with the
LB method. We compare the well known D3Q19 single relaxation (LB-BGK) [5,19] and
multirelaxation time (LB-MRT) [2,20] models together with three alternative setups to
estimate the permeability utilizing an injection channel (I-Ch), pressure boundary con-
ditions (p-BC), or a sample force density (∇p-S). The geometries being investigated
are a 3D Poiseuille flow in a square pipe and a BCC sphere array. While the first one
has the advantage of a minimal discretization error, the second one more realistically
resembles a natural porous medium. We also present a comparison of the efficiency
of the LB-codes based on the above mentioned pore-matrix and pore-list data struc-
tures [18].

2 The Lattice-Boltzmann method

The discretized lattice-Boltzmann (LB) equation reads

nı̇(x + cı̇∆t, t + ∆t)− nı̇(x, t) = ∆t
N

∑̇
ȷ=1

Sı̇ ȷ̇

(
n ȷ̇(x, t)− neq

ȷ̇ (x, t)
)

, (2.1)

where x=(x1, x2, x3) represents a node. The discretization parameters are ∆t and ∆x,
while the discrete velocities cı̇ have the dimension ∆x/∆t. The variable nı̇ is the prob-
able number of particles moving with velocity cı̇. We use a 3D cubic lattice with 19
discrete velocities cı̇, ı̇=1 · · · , 19, known as D3Q19 (see Fig. 1 for a visualization) [4].
The term on the right hand side of Eq. (2.1) is the linearized collision operator, where
Sı̇ ȷ̇ is the collision matrix also known as scattering matrix and neq

ȷ̇ (x, t) is the equilib-
rium distribution [2]. The macroscopic density ρ(x, t) and velocity u(x, t) are obtained


