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Abstract. In this paper we compare different methods currently used in the sta-
bilization of numerical simulations of time-dependent viscoelastic fluid flows de-
scribed with the Oldroyd-B and related models. The methods under consideration,
based on the separation of newtonian-like components from the stress tensor, are
applied to a finite volume analysis of two simple benchmark problems (the plane
Poiseuille startup and pulsated flows), for which analytical solutions are known.
The relative performances of each method are evaluated regarding stability, accu-
racy and efficiency.
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1 Introduction

The absence of explicit diffusive terms in the governing equations of the Oldroyd-B
and related models makes the convergence of numerical iterative simulations of time
dependent viscoelastic flows based on the original formulation of such models diffi-
cult if at all possible. To remedy this situation it is common practice to include dif-
fusive terms in the equations, either by separating purely viscous components from
the stress tensor (like in elastic-viscous stress splitting methods [1-3] or in solvent-
polymer decompositions [4,5]) or by explicitly adding such a term and a correspond-
ing correction in “source” terms [6-8]. These techniques have been (and still are)
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widely applied to stabilize the numerical computation of non-newtonian flows us-
ing viscoelastic constitutive models but, to our knowledge, their relative merits have
never been systematically studied. Such is the purpose of this work.

In this introduction to the problem, we first present the governing differential
equations we will be dealing with, then we provide a brief description of alternative
formulations currently used in numerical simulations and finally show how these for-
mulations can be written under a common general form. We then (Section 2) present
the benchmark problems used in the comparison and their analytical solutions and,
in Section 3, the numerical method is briefly outlined. In Section 4 we present and
discuss our results, and conclusions are drawn in the last section.

1.1 Basic equations and viscoelastic model

Fluid motion at a macroscopic level is well described by Newton’s Second Law, which,
per unit volume and in the absence of external forces, is written as

av -
for a fluid with mass density p moving with velocity @, under a pressure field p. The
stress tensor T obeys a constitutive equation that describes the particular stress-strain
behavior of the fluid under consideration. In this work we consider the Oldroyd-B
model [9], defined by the following constitutive relation

v v
T+ MT = 219 (D + A2D>. (1.2)

Here, 79 is the viscosity and A1 and A, are two model parameters respectively named
relaxation time and retardation time. The rate of deformation tensor D is given by

1
Di]' = E(aiU]‘ + a]‘UZ‘), (1.3)
and the convected derivative [4] is defined in general as
v
Q=—-Q- () — (). Q, (1.4)

dt

or, more explicitly (sum over repeated index k implied),
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The description of a viscoelastic flow requires the simultaneous solution of Egs. (1.1)
and (1.2), together with an equation for mass conservation which, for the case here as-
sumed of incompressible flow, reduces to a zero velocity divergence constraint (3 - 7 =
0), and in most practical situations numerical methods are mandatory. In a straight



