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Abstract. The Schrödinger equation in a 2D cylindrical coordinate system is numeri-
cally solved for the ground state and a few excited states of the hydrogen atom in arbi-
trary magnetic fields. The second order discretization of the PDEs on finite volumes re-
sults in a set of algebraic equations that are solved simultaneously using Gauss-Seidel
Algebraic Multi-Grid (AMG) solver. The modified Stodola-Vianello method is imple-
mented using Gram-Schmidt orthogonalization process to extract the first few energy
states and their wave functions concurrently. A detailed mesh convergence study sug-
gests that both energies and wave functions correctly approach toward the unknown
exact solutions.
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1 Introduction

The problem of hydrogen atoms in magnetic fields of arbitrary strength is of great rel-
evance in astrophysics, atomic and molecular physics, and certain areas of solid-state
physics. The Schrödinger equation for a hydrogen atom in a magnetic field is inseparable
and unsolvable analytically due to spherical symmetry of Coulomb potential and cylin-
drical symmetry of magnetic potential. In the absence of a closed form solution, many
numerical methods have been adopted to establish high precision energy spectrum of hy-
drogen atom over a wide range of magnetic strength. There is not much known about the
structure of a hydrogen atom with a magnetic field in terms of wave functions. Most ap-
proaches use certain wave function expansions or approximations for estimating energy
spectrum. Perturbation theory is well suited for weak-field regime [1,2] while adiabatic
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approximation is for very strong-field regime [3,4]. Rösner et al. [5] computed the high
precision energy spectrum over a wide range of magnetic fields using Hartee-Fock-like
methods [6]. The method seemed to perform poorly in the intermediate field region due
to competing Coulomb and magnetic forces. A few successful variational calculations
have also been reported in [7,8]. Kravchenko et al. [9] has provided some outline of
exact solutions to this problem in forms of the power series in the radial variable and
through the sine of the polar angle. Different numerical methods for the hydrogen atom
in a magnetic field have been reported by many authors [10-16], and high precision en-
ergy spectrum of the hydrogen atom has been achieved. However, the literature lacks
the detailed structure of hydrogen wave functions for low to very high magnetic fields.
It is the purpose of this paper to compute both energies and wave functions that approx-
imate toward the exact solutions through mesh convergence study by directly solving
the Schrödinger equation numerically for the first few energy states over a wide range of
magnetic fields.

2 Finite volume formulation and solution procedure

The time-independent Schrödinger equation in a 2D cylindrical coordinate system (ρ,
z) using atomic units for a hydrogen atom (spin down) with a uniform magnetic field
aligned with z-axis can be written as
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where m is the magnetic quantum number and the magnetic field strength is γ= B/B0,
where B0 = 2.3505×105 T. The energy E is measured in atomic units. The symbol sz is
the spin z-projection, i.e. sz =−1/2 in this analysis. Since we adopt an iterative proce-
dure for the first few modes, let the superscript n+1 stands for current iteration value,
superscript n for previous iteration value, and the subscript i for the ith mode. For a
given m, if i=1,2,3....N modes, there will be N partial differential equations to be solved
simultaneously. If the potential V is denoted as
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Eq. (1) can be written as
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