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AN A PRIORI ERROR ANALYSIS OF OPERATOR UPSCALING
FOR THE ACOUSTIC WAVE EQUATION
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Abstract. In many earth science problems, the scales of interest range from

centimeters to kilometers. Computer power and time limitations prevent in-

clusion of all the fine-scale features in most models. However, upscaling meth-

ods allow creation of physically realistic and computationally feasible models.

Instead of solving the problem completely on the fine scale, upscaling meth-

ods produce a coarse-scale solution that includes some of the fine-scale detail.

Operator-based upscaling applied to the pressure/acceleration formulation of

the acoustic wave equation solves the problem via decomposition of the solution

into coarse and subgrid pieces. To capture local fine-scale information, small

subgrid problems are solved independently in each coarse block. Then these

local subgrid solutions are included in the definition of the coarse problem.

In this paper, accuracy of the upscaled solution is determined via a detailed

finite element analysis of the continuous-in-time and fully-discrete two-scale

numerical schemes. We use lowest-order Raviart-Thomas mixed finite element

approximation spaces on both the coarse and fine scales. Energy techniques

show that in the L2 norm the upscaled acceleration converges linearly on the

coarse scale, and pressure (which is not upscaled in this implementation) con-

verges linearly on the fine scale. The fully discrete scheme is also shown to

be second-order in time. Three numerical experiments confirm the theoretical

rate of convergence results.
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1. Introduction

Data required for deep crustal seismic studies, time-lapse seismology, detailed
near-surface environmental cleanup applications, and other modern-day earth-science
problems can easily run into the terabyte range or beyond. Further, depending on
the questions which need to be addressed in a particular study, the data may
span a range of scales from centimeters to kilometers. Over the past few decades
computational scientists and geoscientists have contributed to the development of
various methods aimed at obtaining accurate and cost-effective solutions to these
modeling problems. Finite-difference methods have long been accepted as an easy-
to-implement and relatively accurate way to solve the discrete wave equation [14],
[27], [28], [33]. While finite element methods for solving the wave equation have
been proposed, they have not been as widely embraced in the geoscience modeling
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community. These methods are better able to handle complex domain geometries,
but they are more difficult to implement than finite-difference methods [28]. (For
examples of finite element approaches to solving the wave equation, see [6], [7], [15],
[16], [21], [22], [24], [25].)

Large-scale acoustic and elastic wave propagation in two and three dimensions
has become computationally feasible in large part due to the successful implemen-
tation of data parallel algorithms (see [29] and works cited therein). In spatial (or
data) parallelism, each processor has ownership of a subset of the total domain.
The processor is responsible for allocating ghost cells at the boundaries of its sub-
domain, for updating the finite-difference solution over its portion of the domain
(including along the ghost cells), and for communicating the boundary solution
data to its immediate neighbors.

As an alternative to data parallelism (which includes all the collected data in
the modeling but parcels the data out to different processors to reduce the com-
putational load), techniques have emerged which attempt to either (1) determine
the most important bits of data to incorporate in the model [34], (2) determine
effective or homogenized input parameters for solving a coarser-scale problem [8],
[11], [13], [23], or (3) approximate the solution via a subgrid upscaling procedure
[1], [4], [12], [19].

In an earlier paper by Vdovina et al. [32], the authors presented the first ex-
tension of operator-based upscaling (originally developed for elliptic flow problems)
to the acoustic wave equation. The key idea in operator upscaling is to solve the
problem via a two-scale decomposition of the solution [4]. At the first stage, the
problem is solved for the fine-scale (subgrid) unknowns defined locally within each
coarse block. The method makes use of homogeneous Neumann boundary condi-
tions between coarse blocks (in the first step) which allow for localization of the
subgrid problems. At the second stage, we use the subgrid solutions to determine
a new coarse-grid operator defined on the global domain. While the method was
originally developed in the context of mixed finite elements, in practice the compu-
tationally intensive part of the algorithm (subgrid solve) is accomplished via finite
differences. (We exploit the connection between lowest-order mixed finite elements
and cell-centered finite differences [30], [32].) The method does not involve explicit
averaging of the input parameters nor does it require scale separation or periodicity.
We parallelize only the first stage of the algorithm (solving the much smaller coarse
problem in serial). The main advantage of this upscaling approach over standard
data parallelism is that there is no communication between processors since the
subgrid problems decouple due to the boundary conditions used in the first stage
of the process. We tested the numerical accuracy of the method on large domains
with geophysically realistic input data typical of subsurface environments. Numer-
ical experiments show that sub-wavelength scale heterogeneities were captured by
the upscaled solution.

In a related paper, Korostyshevskaya and Minkoff [26] analyze the physical prob-
lem solved by the upscaling technique. What this analysis highlights is that the
numerical upscaling process solves a constitutive equation similar in form to the
original equation. The constitutive equation relates acceleration to the gradient of
pressure. For the coarse (upscaled) problem, however, the parameter field (density)
reduces to an averaged density along coarse block edges. Similarly, when analyzing
the pressure equation, we find that the upscaled solution solves the original wave


