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THE REGULARIZATION METHOD FOR A DEGENERATE
PARABOLIC VARIATIONAL INEQUALITY ARISING FROM

AMERICAN OPTION VALUATION

GUANGHUI WANG1 AND XIAOZHONG YANG2

Abstract. In this paper, we present a regularization method to a degenerate

variational inequality of parabolic type arising from American option pricing.

Main difficulty in actually analyzing this kind of problem is caused by the

presence of a non-smoothing initial value function in the formulation of the

problem. We first use a smoothing technique with small parameter ε > 0 to

non-smoothing initial value function; and then we derive the error estimates for

regularized continuous problem and regularized discrete problem, respectively.

Numerical tests are given to confirm our theoretical results.
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1. Introduction

Option trading forms part of our financial markets. A traded option gives to
its owner the right to buy (call option) or to sell (put option) a fixed quantity
of assets of a specified stock at a fixed price (exercise or strike price). There
are two major types of traded options. One is the American option that can be
exercised at any time prior to its expiry date, and the other option, which can
only be exercised on the expiry date, is called the European option. It was shown
by Black and Scholes (cf. [3]) that the value of an European option is governed
by a second order parabolic differential equation with respect to time and the
underlying stock price. This is now referred to as the Black-Scholes equation. The
value of an American option is governed by a more complex mathematical model
due to the flexibility on exercise date. It can be shown that American option
pricing is determined by a linear complementarity problem involving the Black-
Scholes differential operator and a constraint on the value of the option (cf., for
example, [20, 19]). This complementarity problem can also be formulated as a
variational inequality (cf. [19]). The Black-Scholes equation is a degenerate partial
differential as its coefficients of the first and second order spatial derivatives vanish
as the underlying stock price approaches zero. A popular method of removing this
difficulty is to introduce a new variable and transform the Black-Scholes equation
into a heat equation defined on the whole real number set. This technique is used
in many existing papers such as [1, 10, 20]. In this case, the degeneracy point is
transformed to −∞. However, when solve the resulting heat equation numerically,
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the infinite horizon is truncated to a finite region. Recently, a fitted finite volume
method is proposed in [18] to handle the degeneracy, based on the idea in [13, 14].
This technique can also be used for solving the American option problem if it is
used along with a power penalty method (cf., for example, [19]).

In this paper we shall discuss the regularization method [12] for solving the
parabolic variational inequality with a degenerate partial differential operator gov-
erning American option valuation. To our best knowledge, there are relatively few
papers in which numerical methods are studied for parabolic variational inequalities
(cf, for example, [1, 7, 17] and references therein), let alone parabolic inequalities
with degenerate partial differential operators (cf. [8]). The main difficulty is that
solutions to parabolic variational inequalities normally less smooth than those of
elliptic problems even all the data are smooth. Johnson [7] and Vuik [17] studied
the finite element approximations of a variational inequality of parabolic type un-
der some regularity assumptions on the exact solution. To bypass the difficulty, we
shall construct a regularization method for the variational inequality involving the
Black-Scholes operator, and derive the error bound in the weighted Sobolev space
for the method.

The remainder of this paper is organized as follows. In the next section we will
state the strong problem governing American put option pricing and some prelim-
inaries. In Section3, we shall rewrite the problem as a more mathematical form,
i.e., a variational inequality, and discuss the solvability of the resulting problem.
In section4, we present the regularity problem of problem3.1, and prove its error
bound with ε. We will present some numerical results to confirm the theoretical
findings in Section5.

2. Preliminaries

Let V denote the value of an American put option with strike price K and
expiry date T , and let x be the price of the underlying asset of the option. It is
known (cf., for example, [20]) that V satisfies the following strong form of linear
complementarity problem

LV (x, t) ≥ 0,(2.1)
V (x, t)− V ∗(x) ≥ 0,(2.2)

LV (x, t) · (V (x, t)− V ∗(x)) = 0,(2.3)

a.e. in Ω := I × J, where L is the Black-Scholes operator defined by

(2.4) LV := −∂V

∂t
− 1

2
σ2(t)x2 ∂2V

∂x2
− r(t)x

∂V

∂x
+ r(t)V,

I = (0, X) ⊂ R and J = (0, T ) with positive constants X and T , σ(t) denotes the
volatility of the asset, r(t) the interest rate, and V ∗ is the final (payoff) condition
defined by

(2.5) V (x, T ) = V ∗(x) = max{K − x, 0}.
For clarity, we only consider American put options in this paper. Naturally, the
theory developed applies to American call options and other complementarity prob-
lems of the form (2.1)–(2.3) arising in finance as well.

Some standard notation is to be used in the paper. For an open set S ∈ R and
1 ≤ p ≤ ∞, we let Lp(S) = {v : (

∫
S
|v(x)|pdx)1/p < ∞} denote the space of all

p-power integrable functions on S. The inner product and the norm on L2(S) are
denoted respectively by (·, ·)S and ‖ · ‖0. We use ‖ · ‖Lp(S) to denote the norm
on Lp(S). For m = 1, 2, ..., we let Hm,p(S) denote the usual Sobolev space with


