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AN ALGORITHM-DRIVEN APPROACH TO ERROR ANALYSIS
FOR MULTIDIMENSIONAL INTEGRATION

FRED J. HICKERNELL AND JOSEF DICK

Abstract. Most error analyses for numerical integration algorithms specify the

space of integrands and then determine the convergence rate for a particular

algorithm or the optimal algorithm. This article takes a different perspective

of specifying the convergence rate and then finding the largest space of inte-

grands for which the algorithm gives that desired rate. Both worst-case and

randomized error analyses are provided.
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1. Introduction

Multi-dimensional integrals of the form

(1) I(f) :=
∫

Xs

f(x) dρ(x), Xs ⊆ Rs,

arise in a number of applications. Here f is some known integrand and ρ is a given
probability measure, i.e., I(1) = 1. For example, if f(x) is the discounted payoff
of an exotic option, and x = (x1, . . . , xs) dictates the changes in the prices of the
underlying assets that determine the payoff, then the fair price of that option is
the average discounted payoff, I(f), where Xs = Rs and ρ is a multivariate normal
distribution.

Error analysis of numerical integration rules typically yields error bounds and
asymptotic rates of convergence for a specified Banach space of integrands. This ar-
ticle proposes a different approach to analyzing numerical integration rules, namely
by specifying the convergence rate and the algorithm and then finding the largest
space of integrands for which the algorithm gives that desired rate.

The integration rules considered here take the form of a simple average of inte-
grand values:

(2) Q0(f) := 0, Qn(f) := n−1
n−1∑

i=0

f(xi) for n > 0,

where {xi} is the design or set of nodes where the integrand is evaluated. The
nodes may be deterministic or random, but they are assumed to be independent
of the integrand, making (2) a linear rule. Adaptive rules are not considered. The
design is assumed to be an infinite sequence of which one uses the first n points. In
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practice one may want to consider Qn for some increasing sequence of non-negative
integers, N = {0, n0, n1, . . .}. A typical example is nm = 2m. Among the familiar
rules of the form (2) that are considered here are simple Monte Carlo rules [4],
rules based on low discrepancy sequences, such as integration lattices [11, 14, 20]
or digital (t,m, s)-nets [14, 15]. Smolyak rules are similar, with the difference that
one replaces n−1 with more general weights ai,n, hence the approach proposed in
this paper could also be applied to such rules.

Researchers have expended considerable effort to understand the strengths and
weaknesses of various numerical integration rules. This is typically done by fixing a
Banach space of integrands, F , with a norm ‖·‖F , and computing the worst possible
error of a particular rule for integrands of norm no greater than unity:

err(f, Qn) := I(f)−Qn(f),

ewo(‖·‖F , Qn) := sup
‖f‖F≤1

|err(f, Qn)| , n ∈ N .(3)

The quantity ewo(‖·‖F , Qn) is called the worst-case error of Qn. Then one attempts
to determine the asymptotic rate of convergence of this quantity, i.e., to show that

(4) CL(s)g(n) ≤ inf
n′∈N
n′≤n

ewo(‖·‖F , Qn′) ≤ CU (s)g(n), n = 1, 2, . . . ,

for some function g(n) that tends to zero as n → ∞. Typically g(n) is a negative
power of n or a negative power of n times some power of log n. When (4) holds,
one may say that ewo(‖·‖F , Qn) ³ g(n). If only an upper bound is known, then
one may say that ewo(‖·‖F , Qn) = O(g(n)). It is also of interest to know how the
error depends on the dimension, s, i.e., whether CU (s) and CL(s) can be made
independent of s, or polynomial in s. This corresponds to the problems of strong
tractability or tractability, respectively, provided that ewo(‖·‖F , Q0) = 1 and g(n)
decays polynomially in n−1.

Knowing that a numerical integration rule has a particular convergence rate is
not the full story. One would also like to know the convergence rate of the best
possible rule. The worst-case difficulty of an integration problem can be defined as
the error of the best possible rule:

(5) ewo(‖·‖F , n) := inf
Qn

ewo(‖·‖F , Qn), n ∈ N .

If ewo(‖·‖F , Qn) ³ ewo(‖·‖F , n), then the rule Qn is optimal. In other words, an
optimal integration rule has the same convergence rate as the best rule, but their
errors may differ by a constant factor (which again may depend on s).

When the numerical integration rule used is a randomized one, then it makes
sense to compute the randomized error. Let Qn denote the sample space of random
rules Qn, where now n denotes the average number of function evaluations used.
Let µ be a probability measure on this sample space, and let rmsQn denote the root
mean square using this measure µ. The randomized error for a given Qn and µ is
defined as

rmse(f,Qn, µ) := rms
Qn

|err(f,Qn)| ,
era(‖·‖F ,Qn, µ) := sup

‖f‖F≤1

rmse(f,Qn, µ), n ∈ N .(6)

Although the norm-based approach described above is quite useful, it has a cer-
tain drawback that this article attempts to address, namely, the space of integrands
F is fixed in advance. Once the space of integrands and the accompanying norm


