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Abstract. An approximate artificial boundary condition based on a boundary integral equa-
tion is designed for the vortex movements. Point vortex and cloud in cell methods are used
in numerical simulation of vortex motions. The numerical experiments show that the ap-
proximate artificial boundary condition is useful and sufficiently accurate in hydrodynamics.
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1 Motion of vortices and cloud in cell method

The motion of incompressible inviscid flow in two dimensions can be described by the equations

∂u

∂t
+ (u · ∇) +

1

ρ
∇P = f (1)

∇u = 0 , (2)

where u = (u, v), ρ, P , and f = (f1, f2) denote fluid velocity, density, pressure, and force acting
on a unit fluid at the point x = (x, y) and time t, respectively. We introduce the vorticity
distribution ω(x, y, t) = −∂u

∂y
+ ∂v

∂x
and the stream function ψ(x, y, t) =

∫

x

x0

vdx + udy, where

x0 = (x0, y0) is an arbitrary point in the (x, y)−plane. The above integration is independent
of the integration path. Due to equations (2) and Green’s formula, the equations (1), (2) then
become

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= 0 (3)

−∆ψ = ω (4)

∂ψ

∂y
= u (5)

∂ψ

∂x
= −v (6)

ω(x, y, 0) = ω0(x, y) . (7)
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In order to simulate numerically the motion of vortices, we adopt the point vortex method
(PVM) [1,2]. It starts from discretising the continuous vorticity distribution ω by a large number
of point vortices, then simulating the motion of vortices by tracing every point vortex. By
covering the compact support of ω with a rectangular grid with mesh spacing hx, hy in the
x, y directions respectively, we get M rectangles. The k-th point vortex, with vorticity pk =
ω(xk, yk, t)hxhy, is located at the center (xk, yk) of the k-th rectangle, and satisfies the motion
equations

∂xk

∂t
= uk,

∂yk

∂t
= vk. (8)

Then the vorticity distribution is approximated by the formula

ω(x, y, t) ≈
M
∑

k=1

pkδ(x− xk)δ(y − yk),

and

M
∑

k=1

pk =

∫∫

Ω

ω(x, y, t)dσ.

Now we divide the computational domain into uniform squares with mesh spacing h in each the
direction, and use the cloud in cell method (CICM) [1] to compute the vorticity of the mesh
points. If the coordinates of a point vortex pk are written as xk = ih + dx, yk = jh + dy, the
point vortex allocates its vorticity pk to the four surrounding mesh points by CICM:

ωi,j =
(h− dx)(h− dy)

h2
pk, ωi+1,j =

dx(h− dy)

h2
pk,

ωi+1,j+1 =
dxdy

h2
pk, ωi,j+1 =

(h− dx)dy

h2
pk.

(9)

When all point vortices have credited their vortices to the mesh points in the same way, Poisson′s
equation (4) can be solved by the usual five-point scheme with an artificial boundary condition.
In this paper we will adopt an artificial condition based on a boundary integral equation. When
the stream function ψ is obtained, the velocity of the mesh points can be obtained by center
differences approximating the equations (5) and (6). The velocity of the point vortex pk is
evaluated by the CICM according to

uk =
(h− dx)(h − dy)

h2
ui,j +

dx(h − dy)

h2
ui+1,j +

dxdy

h2
ui+1,j+1 +

(h− dx)dy

h2
ui,j+1,

vk =
(h− dx)(h − dy)

h2
vi,j +

dx(h− dy)

h2
vi+1,j +

dxdy

h2
vi+1,j+1 +

(h− dx)dy

h2
vi,j+1.

(10)

Using the differences scheme

xk(t+ ∆t) = xk(t) + uk∆t , yk(t+ ∆t) = yk(t) + vk∆t, (11)

where ∆t is the time step, we advance the point vortices one time step.


