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Abstract. A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon
equation on the whole line. Its stability and convergence are proved. Numerical results
coincides well with the theoretical analysis and demonstrate the efficiency of this approach.
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1 Introduction

The usual spectral methods are only available for differential equations on bounded domains.
But it is also important to consider spectral methods for unbounded domains. For this purpose,
we may use Hermite and Laguerre approximations on infinite intervals, see [2, 3, 6, 9]. We can
also reformulate some problems on infinite intervals to singular problems on finite intervals, and
then use specific Jacobi approximations to solve them numerically, see [4, 5]. Another effective
method is based on various rational approximations, see [1, 7, 8].

This paper deals with the Legendre rational spectral method for the nonlinear Klein-Gordon
equation on the whole line, which plays an important role in quantum mechanics. In the next
section, we first recall some basic results on the Legendre rational approximation, and then
propose the Legendre rational spectral scheme for the nonlinear Klein-Gordon equation. We
also state the main results on its stability and convergence, and present some numerical results
demonstrating the spectral accuracy in space of this method. In section 3, we prove the stability
and convergence of the proposed scheme. Although we only consider the nonlinear Klein-Gordon
equation in this paper, the main idea and techniques are also applicable to other nonlinear
problems in unbounded domains.
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2 Rational spectral method for Klein-Gordon equation

2.1 Legendre rational orthogonal approximation

Let Λ = {x | − ∞ < x < ∞} and let χ(x) be certain weight function. For 1 ≤ p ≤ ∞,

we define the weighted space Lp
χ(Λ) and its norm ||v||Lp

χ
as usual. In particular, we denote by

(u, v)χ and ||v||χ the inner product and the norm of the space L2
χ(Λ). For any integer m ≥ 0, we

define the weighted Sobolev space Hm
χ (Λ) in the usual way. Its inner product, semi-norm and

norm are denoted by (u, v)m,χ, |v|m,χ and ||v||m,χ, respectively. For any r > 0, we define the
space Hr

χ(Λ) and its norm ||v||r,χ by space interpolation. If χ(x) ≡ 1, then we denote Hr
χ(Λ),

|v|r,χ, ||v||r,χ, ||v||χ and (u, v)χ by Hr(Λ), |v|r, ||v||r, ||v|| and (u, v), respectively. In addition,
||v||∞ = ||v||L∞(Λ).

Let Ll(x) be the Legendre polynomial of degree l. The Legendre rational function of degree
l is defined by (see [8])

Rl(x) = Ll

(
x√

x2 + 1

)
.

Let ω(x) = (x2 + 1)−
3
2 . Then

∫

Λ

Rl(x)Rm(x)ω(x)dx = (l +
1

2
)−1δl,m.

Thus, for any function v ∈ L2
ω(Λ),

v(x) =

∞∑

l=0

v̂lRl(x), v̂l =

(
l +

1

2

)∫

Λ

v(x)Rl(x)ω(x)dx.

Now, let N be any positive integer, and

RN = span{R0, R1, · · · , RN}.

The L2
ω(Λ)-orthogonal projection PN : L2

ω(Λ) → RN is defined by

(PNv − v, φ)ω = 0, ∀φ ∈ RN .

The H1
ω(Λ)-orthogonal projection P 1

N : H1
ω(Λ) → RN is defined by

(P 1
Nv − v, φ)1,ω = 0, ∀φ ∈ RN .

For the description of approximation results, we introduce the spaces Hr
ω,Z(Λ), Z = A, B, C. For

any integer r ≥ 0,

Hr
ω,Z(Λ) = {v | v is a measurable on Λ and ||v||r,ω,Z < ∞},

equipped with the norms

||v||r,ω,Z =

(
r∑

k=0

||(x2 + 1)
r+k+γz

2 ∂k
xv||2ω

) 1
2

,

where γA = 0, γB = 1 and γC = −1. For any r > 0, we define these spaces and their norms by
space interpolation.

In the sequel, c denotes a generic positive constant independent of any function and N . We
have the following results (see [8]).


