BIFURCATION ANALYSIS AND COMPUTATION OF DOUBLE TAKENS－BOGDANOV POINT IN Z_{2}－EQUIVARIABLE NONLINEAR EQUATIONS＊

Yang Zhonghua（杨忠华）Zhou Wei（周 尉）

Abstract

The paper deals with the computation and bifurcation analysis of double Takens－Bogdanov point $\left(u^{0}, \Lambda^{0}\right)$（in short，DTB point）in the Z_{2}－equivariable nonlinear equation $f(u, \Lambda)=0, f: U \times R^{4} \rightarrow V$ ，where U and V are Banach spaces，param－ eters $\Lambda \in R^{4}$ ．At $\left(u^{0}, \Lambda^{0}\right)$ ，the null space of f_{u}^{0} has geometric multiplicity 2 and algebraic multiplicity 4．Firstly a regular extended system for computing DTB point is proposed．Secondly，it is proved that there are four branches of singular points bifur－ cated from DTB point：two paths of STB points，two paths of TB－Hopf points．Finally， the numerical results of one dimensional Brusselator equations are given to show the effectiveness of our theory and method．

Key words Z_{2}－equivariance，Takens－Bogdanov point，Hopf point，extended system． AMS（2000）subject classifications 58F14

1 Introduction

The singular points in Z_{2}－equivariable nonlinear equations have been studied in［1］－［6］．The purpose of the paper is to discuss the computation of DTB point in Z_{2}－equivariable nonlinear equations with four parameters and relative properties．

Consider the Z_{2}－equivariable nonlinear equation with four parameters

$$
\begin{equation*}
f(u, \lambda, \alpha, \beta, \gamma)=0, \quad f: U \times R^{4} \rightarrow V, \tag{1.1}
\end{equation*}
$$

where U and V are Banach spaces，f is a smooth Fredholm operator with index zero satisfying

[^0]Z_{2}-equivariance. There is an $s \in L(V) \cap L(U)$, such that
$$
s \neq I, s^{2}=I, f(s u, \lambda, \alpha, \beta, \gamma)=s f(u, \lambda, \alpha, \beta, \gamma), \forall(u, \lambda, \alpha, \beta, \gamma) \in U \times R^{4}
$$

It is well known that the presence of Z_{2}-equivariance implies the decomposition of U, V and their dual space U^{\prime}, V^{\prime}

$$
\begin{aligned}
& U=U_{s} \oplus U_{a}, V=V_{s} \oplus V_{a} \\
& U^{\prime}=U_{s}^{\prime} \oplus U_{a}^{\prime}, V^{\prime}=V_{s}^{\prime} \oplus V_{a}^{\prime}
\end{aligned}
$$

where

$$
\begin{gathered}
U_{s}=\{u \in U, s u=u\}, U_{a}=\{u \in U, s u=-u\}, \\
V_{s}=\{v \in V, s v=v\}, V_{a}=\{v \in V, s v=-v\}, \\
U_{s}^{\prime}=\left\{\psi \in U^{\prime}, \psi s=\psi\right\}, U_{a}^{\prime}=\left\{\psi \in U^{\prime}, \psi s=-\psi\right\}, \\
V_{s}^{\prime}=\left\{\psi \in V^{\prime}, \psi s=\psi\right\}, V_{a}^{\prime}=\left\{\psi \in V^{\prime}, \psi s=-\psi\right\} .
\end{gathered}
$$

It is easy to check

$$
\psi u=0, \text { when } \psi \in U_{s}^{\prime}, u \in U_{a} ; \text { or } \psi \in U_{a}^{\prime}, u \in U_{s}
$$

Fixing $\gamma,(1.1)$ becomes nonlinear equation with three parameters λ, α, β.
Definition $1.1 \quad\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\right)$ is called a STB1 point of (1.1) if

$$
\begin{align*}
& f\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\right)=0, u_{0} \in U_{s} \tag{1.2a}\\
& N\left(f_{u}^{0}\right)=\operatorname{span}\left(\phi_{s}, \phi_{a}\right), \phi_{s} \in U_{s}, \phi_{a} \in U_{a} \tag{1.2b}\\
& R\left(f_{u}^{0}\right)=\left\{v \in V, \psi_{s} v=\psi_{a} v=0\right\}, \psi_{s} \in V_{s}^{\prime}, \psi_{a} \in V_{a}^{\prime}, \tag{1.2c}\\
& \psi_{s} \phi_{s}=0, \psi_{a} \phi_{a} \neq 0 \tag{1.2d}
\end{align*}
$$

Definition $1.2 \quad\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\right)$ is called a STB2 point of (1.1) if

$$
\begin{equation*}
f\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\right)=0, u_{0} \in U_{s}, \tag{1.3a}
\end{equation*}
$$

$$
\begin{equation*}
N\left(f_{u}^{0}\right)=\operatorname{span}\left(\phi_{s}, \phi_{a}\right), \phi_{s} \in U_{s}, \phi_{a} \in U_{a} \tag{1.3b}
\end{equation*}
$$

$$
\begin{equation*}
R\left(f_{u}^{0}\right)=\left\{v \in V, \psi_{s} v=\psi_{a} v=0\right\}, \psi_{s} \in V_{s}^{\prime}, \psi_{a} \in V_{a}^{\prime} \tag{1.3c}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{s} \phi_{s} \neq 0, \psi_{a} \phi_{a}=0 \tag{1.3d}
\end{equation*}
$$

Definition 1.3 $\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\right)$ is called a TB-Hopf1 point of (1.1) if

$$
\begin{align*}
& f\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\right)=0, u_{0} \in U_{s} \tag{1.4a}\\
& N\left(f_{u}^{0}\right)=\operatorname{span}\left(\phi_{s}\right), \phi_{s} \in U_{s} \tag{1.4b}\\
& R\left(f_{u}^{0}\right)=\left\{v \in V, \psi_{s} v=0\right\}, \psi_{s} \in V_{s}^{\prime} \tag{1.4c}\\
& \psi_{s} \phi_{s}=0 \tag{1.4d}\\
& N\left(f_{u}^{0} \pm \omega_{0} i I\right)=\operatorname{span}\left(a_{a}+i b_{a}\right), \omega_{0}>0, a_{a}, b_{a} \in U_{a} . \tag{1.4e}
\end{align*}
$$

Definition $1.4 \quad\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\right)$ is called a TB-Hopf2 point of (1.1) if

$$
\begin{align*}
& f\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\right)=0, u_{0} \in U_{s} \tag{1.5a}\\
& N\left(f_{u}^{0}\right)=\operatorname{span}\left(\phi_{a}\right), \phi_{a} \in U_{a} \tag{1.5b}\\
& R\left(f_{u}^{0}\right)=\left\{v \in V, \psi_{a} v=0\right\}, \psi_{a} \in V_{a}^{\prime} \tag{1.5c}\\
& \psi_{a} \phi_{a}=0 \tag{1.5d}\\
& N\left(f_{u}^{0} \pm \omega_{0} i I\right)=\operatorname{span}\left(a_{s}+i b_{s}\right), \omega_{0}>0, a_{s}, b_{s} \in U_{s} . \tag{1.5e}
\end{align*}
$$

For (1.1) with four parameters, we have
Definition 1.5 $\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}, \gamma_{0}\right)$ is called a double TB point of (1.1) if

$$
\begin{equation*}
f\left(u_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}, \gamma_{0}\right)=0, u_{0} \in U_{s}, \tag{1.6a}
\end{equation*}
$$

$$
\begin{equation*}
N\left(f_{u}^{0}\right)=\operatorname{span}\left(\phi_{s}, \phi_{a}\right), \phi_{s} \in U_{s}, \phi_{a} \in U_{a} \tag{1.6b}
\end{equation*}
$$

$$
\begin{equation*}
R\left(f_{u}^{0}\right)=\left\{v \in V, \psi_{s} v=\psi_{a} v=0\right\}, \psi_{s} \in V_{s}^{\prime}, \psi_{a} \in V_{a}^{\prime} \tag{1.6c}
\end{equation*}
$$

[^0]: ＊Supported by National Natural Science Foundation of China（19971057），Shanghai Development Foundation for Science and Technology（No．00JC14057），Shanghai Science and Technology Committee（No．03QA14036）and Doctoral Program of National Higher Education． Received：Dec．25， 2002.

