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INVALIDITY OF DECOUPLING A BIHARMONIC EQUATION
TO TWO POISSON EQUATIONS ON NON-CONVEX POLYGONS

SHENG ZHANG AND ZHIMIN ZHANG

(Communicated by Yanping Lin)

Abstract. We clarify the validity of a method that decouples a boundary

value problem of biharmonic equation to two Poisson equations on polygo-

nal domains. The method provides a way of computing deflections of simply

supported polygonal plates by using Poisson solvers. We show that such decou-

pling is not valid if the polygonal domain is not convex. It may fail even when

the right hand side function is infinitely smooth and supported away from the

reentrant corners.
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1. Introduction

Let Ω ⊂ R2 be a two-dimensional domain. The boundary value problem of
biharmonic equation

(1) ∆2u = f in Ω; u|∂Ω = 0, ∆u|∂Ω = 0.

can be formally de-coupled to two Poisson equations by introducing an intermediate
function v such that

(2) −∆v = f in Ω, v|∂Ω = 0 and −∆ũ = v in Ω, ũ|∂Ω = 0.

When ∂Ω and f are smooth, (1) and (2) are equivalent in the sense that u =
ũ. This is easily seen from the regularity of solutions of these equations up to
the domain boundary [3, 5]. This decoupling gives rise to a numerical method
of solving the biharmonic equation (1) by using Poisson solvers. Incidentally, for
polygonal domains, the equation (1) also determines the transverse deflection of
a simply supported plate loaded by a resultant transverse force f [1, 2, 4], and
the decoupling has been used in numerical computation of the plate deflection.
However, for polygonal domains, the validity of this decoupling is not obvious.
Actually, we show that it is not valid when the polygon is not convex.

To see the well-posedness of these equations on polygonal domains, we write
them in weak forms. In the following, even without explicit indication, a function
space is composed of functions defined on Ω. For example, H1 means H1(Ω). The
weak formulation of (1) seeks u ∈ H2 ∩H1

0 such that

(3) (∆u, ∆w)L2 = 〈f, w〉 ∀ w ∈ H2 ∩H1
0 .

Here the parenthesis stands for the inner product in the Hilbert space indicated by
the subscript. The right hand side is the dual product between f , viewed as an
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element of the duality of the H2∩H1
0 , and w. The equations in (2) become seeking

v and ũ in H1
0 , respectively, such that

(4)
(∇v,∇w)[L2]2 = 〈f, w〉 ∀ w ∈ H1

0 ,

(∇ũ,∇w)[L2]2 = (v, w)L2 ∀ w ∈ H1
0 .

Of course, when ∂Ω and f are smooth, the equations (3) and (4) are well-posed and
u = ũ, which are also solutions of the differential equations (1) and (2). However,
the weak equations make broader sense than the differential equations: Their well-
posedness requires less regularity on the domain and the loading function. The
question is whether or not the equivalence between (3) and (4) remains when the
domain boundary and loading function are not smooth. This is an important issue
that is crucial to the validity of the numerical method for the simply supported
plate model (3) obtained by combining the Poisson solvers for the two equations in
(4).

The weak equation (3) is well-posed for polygonal domains as long as the function
f defines a linear continuous functional on H2 ∩H1

0 . This well-posedness relies on
the inequality that for polygonal domains one has [4]

(5) ‖∆w‖L2 ≥ C‖w‖H2 ∀ w ∈ H2 ∩H1
0 .

Here C is a positive constant depending on Ω. The equations in (4) are well-posed
if f ∈ H−1. Thus, (3) requires less regularity on f than (4) does. We shall assume
that f ∈ H−1 such that both u and ũ are uniquely determined, and consider the
question that whether u = ũ. The answer is that if Ω is a convex polygon then
u = ũ. However, if Ω is not convex, then (3) is not equivalent to (4) in the sense
that there exists loading function f such that u 6= ũ. Our argument is based on the
observation that the solution u of (3) lies in H2∩H1

0 , while ũ is only required to be
in H1

0 . Thus if ũ 6∈ H2, then ũ 6= u. In the next section, we construct an example
to show that on non-convex polygons this may occur even when f is smooth and
supported away from the reentrant corners. In the last section we prove that if
ũ ∈ H2 then ũ = u. Therefore, if the polygonal domain is convex, then (3) and (4)
are equivalent as long as f ∈ H−1.

2. An example for the invalidity of the decoupling

As an example, we consider a non-convex polygonal domain and put one of its
reentrant corners at the origin of the Cartesian coordinate system. See Figure 1 in
which the reentrant angle ω > π. Let (r, θ) be the usual polar coordinates. With a
slight abuse of notations, we use the same letter to denote a function expressed in
both Cartesian and polar coordinates. Let the loading function f be defined by

(6) f(r, θ) = sin αθ
(

rα d4φ(r)
dr4

+ (4α + 2)rα−1 d3φ(r)
dr3

+ (4α2 − 1)rα−2 d2φ(r)
dr2

− (4α2 − 1)rα−3 dφ(r)
dr

)
.

Here α = π
ω < 1, and φ is a smooth function such that φ(r) = 1 for 0 < r < r1 and

φ(r) = 0 for r > r2. See Figure 1 for the meanings of r1 and r2. This is a smooth
function whose support is the shaded region in the figure, which is away from the
reentrant corner. For such an f , the solution of (4) is given by

(7)
v(r, θ) = −

(
(2α + 1)rα−1 dφ(r)

dr
+ rα d2φ(r)

dr2

)
sin αθ,

ũ(r, θ) = rαφ(r) sin αθ.


