
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 2, No. 4, pp. 611-639

Commun. Comput. Phys.
August 2007

Modeling of the Frozen Mode Phenomenon and its

Sensitivity Using Discontinuous Galerkin Methods

S. Chun and J. S. Hesthaven∗

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.

Received 19 September 2006; Accepted (in revised version) 28 November 2006

Communicated by Wei Cai

Available online 8 January 2007

Abstract. We investigate the behavior and sensitivity of the frozen mode phenomenon
in finite structures with anisotropic materials, including both magnetic materials and
non-normal incidence. The studies are done by using a high-order accurate discontin-
uous Galerkin method for solving Maxwells equations in the time domain. We confirm
the existence of the phenomenon also in the time-domain and study carefully the im-
pact of the finite crystal on the frozen mode. This sets the stage for a thorough study
of the robustness of the frozen mode phenomenon, resulting in guidelines for which
design parameters are most sensitive and acceptable tolerances.
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1 Introduction

The use of complex metamaterials for controlling the propagation and manipulation of
electromagnetic energy continues to attract significant interest among engineers. Re-
cently, there has been a flurry of activity in the study and development of periodic struc-
tures comprising of several different anisotropic materials after it was shown that such
structures could support highly unusual electromagnetic phenomena [18–20] such as a
non-reciprocal propagation, very low transmission loss into the crystal and perhaps a
most interesting phenomenon known as the frozen mode.

The frozen mode is a distinctive phenomenon related to stationary inflection points
of the dispersion relations ω(k) such as,

∂ω

∂k
=0;

∂2ω

∂k2
=0;

∂3ω

∂k3
6=0 at ω =ω0.
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Figure 1: Dispersion relations for two different types of layer. Left: gyrotropic photonic crystals
(ωb = 0.690320778, ω0 = 0.607676756, ωa = 0.502044368) and right: oblique anisotropic layers (ωb =
9.3160209805, ω0 =9.164450223, ωa =9.0569705995). ω and k are expressed in units of c/L and 1/L.

When a monochromatic wave with frequency ω0 propagates into a periodic array of unit
cells with this dispersion relation, the wave shows the following striking features due
to the significantly large transmittance rate at inflection points contrary to the negligible
transmittance rate at band edges [18],

• dramatic slow-down of the waves

• enormously increased field amplitude

• cup-like singularity of the transmittance rate

• unidirectionality of monochromatic waves.

Let us briefly explain these features in the following. Fig. 1 shows two different types
of dispersion relation for two different layers, but both of them contain the same kind of
inflection point ω0. At each ω0 in Fig. 1, we have two eigenmodes k0 and k1 such that
∂ω
∂k |k=k0

=0, ∂ω
∂k |k=k1

<0 and only the eigenmode at k1 transfers the energy. Since we have
no eigenmode with a positive group velocity, the transmitted wave does not transfer
the energy in the direction of the propagation. Physically, it means that the incident
electromagnetic wave slows down with infinitesimal group velocity within the periodic
layers. However, if a wave propagates in the opposite direction, we have ∂ω

∂k |k=k1
> 0

and the eigenmode k1 transfers the energy and consequently the abnormal slow-down
vanishes. Thus, the crystal behaves differently depending on the vector of propagation,
a phenomenon known as electromagnetic unidirectionality.

When the frequency of the wave is close to ω0, a transmitted wave consists of propa-
gation components and evanescent components. The latter decays as the wave proceeds
along the propagation direction, but the former remains to propagate. Both components
initially increase dramatically, but their magnitudes remain almost equal with opposite
sign. Thus, the field amplitude at the interface of the layer and vacuum remain almost
the same, but once the wave precedes into the slab, the evanescent components die out


