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Abstract. We investigate numerical approximations based on polynomials that are or-
thogonal with respect to a weighted discrete inner product and develop an algorithm
for solving time dependent differential equations. We focus on the family of super
Gaussian weight functions and derive a criterion for the choice of parameters that pro-
vides good accuracy and stability for the time evolution of partial differential equa-
tions. Our results show that this approach circumvents the problems related to the
Runge phenomenon on equally spaced nodes and provides high accuracy in space.
For time stability, small corrections near the ends of the interval are computed using
local polynomial interpolation. Several numerical experiments illustrate the perfor-
mance of the method.
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1 Introduction

This paper investigates a high order numerical method for approximating smooth func-
tions on a uniform grid and solving partial differential equations on a hybrid grid in
[−1,1]. The method uses the discrete orthogonal polynomial least squares (DOP-LS) ap-
proximation based on the super Gaussian weight function, which is both smoothly con-
nected to zero at ±1 and equals one in nearly the entire domain. As a result, the method
has fast decaying expansion coefficients and also successfully suppresses Runge oscil-
lations that pollute the boundary regions. Such desirable weight function features were
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first exploited in [17] in the context of spectral reprojection from (pseudo-)spectral Fourier
data, and later in [15] as a least squares approximation technique for piecewise smooth
functions given equally or arbitrarily spaced points. In [17], the Fourier coefficients were
reprojected onto the Freud polynomial basis (what we will refer to as a super Gaussian
polynomial basis) to eliminate the Gibbs phenomenon. The concept of reprojection from
the Fourier basis onto another basis to remove the Gibbs phenomenon has been discussed
at length in the context of Gegenbauer reconstruction, see [20, 21] and references therein.
The Gibbs phenomenon is removed due to the reprojection polynomial weight function
being smoothly connected to zero near the boundaries, which prevents the Gibbs oscilla-
tions in the Fourier approximation from entering the reprojection and allows rapid decay
of the reprojection expansion coefficients. However, the Gegenbauer polynomials are not
entirely satisfactory as a reprojection basis due to their high propensity to round-off er-
ror. Furthermore, for large orders, the Gegenbauer partial sum expansion behaves like
a power series, yielding what was coined the generalized Runge phenomenon in [2]. In
contrast, as mentioned above, the super Gaussian weight functions are designed to be
one in nearly the entire domain of approximation, so that the growth of the correspond-
ing polynomials is better controlled. The approximation also utilizes more information
from the underlying function. In [15] it was noted that the values given on equidistant
grid points need not first be converted to pseudo-spectral Fourier coefficients in order to
recover a highly accurate approximation. The resulting super Gaussian discrete orthogo-
nal polynomial least squares (DOP-LS) method was shown to be robust and efficient for the
approximation of smooth functions.

This investigation further analyzes the super Gaussian DOP-LS approximation of
smooth functions in [−1,1] when the function is known at uniform grid points. We extend
the analysis from [15] to characterize the optimal parameters needed for convergence in
[−1,1], as well as in smaller intervals [−δ,δ], 0 < δ < 1. This information is then used to
develop a new hybrid multi-domain method for the approximation of smooth functions.
The technique consists of “patching” the super Gaussian approximation in [−δ,δ] with
Chebyshev (interpolatory) approximations in the two smaller boundary regions [−1,−δ]
and [δ,1] on Gauss Lobatto grids. The combined method enables high order approxima-
tion of smooth functions with less point clustering than the typical orthogonal polyno-
mial approximation methods.

In the second part of this paper we incorporate the hybrid multi-domain approxima-
tion into a numerical method that computes partial differential equations with smooth
solutions. Fourier pseudo-spectral methods are well suited for solving periodic smooth
problems on discrete data. Orthogonal polynomials, such as Chebyshev or Legendre
polynomials, are used as basis polynomials for spectral methods solving smooth non-
periodic problems. In this case, the grid points must be distributed so that the quadra-
ture used (typically Gauss or Gauss-Lobatto) to calculate the expansion coefficients yields
high enough accuracy. Such distributions are always clustered at the ends of the intervals.
This is a traditional bottleneck when solving partial differential equations with spectral
methods, since explicit time stepping methods require very small time steps on the order


