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Abstract. Despite decades of development, Lagrangian hydrodynamics of strength-
free materials presents numerous open issues, even in one dimension. We focus on the
problem of closing a system of equations for a two-material cell under the assumption
of a single velocity model. There are several existing models and approaches, each
possessing different levels of fidelity to the underlying physics and each exhibiting
unique features in the computed solutions. We consider the case in which the change
in heat in the constituent materials in the mixed cell is assumed equal. An instanta-
neous pressure equilibration model for a mixed cell can be cast as four equations in
four unknowns, comprised of the updated values of the specific internal energy and
the specific volume for each of the two materials in the mixed cell. The unique con-
tribution of our approach is a physics-inspired, geometry-based model in which the
updated values of the sub-cell, relaxing-toward-equilibrium constituent pressures are
related to a local Riemann problem through an optimization principle. This approach
couples the modeling problem of assigning sub-cell pressures to the physics associ-
ated with the local, dynamic evolution. We package our approach in the framework
of a standard predictor-corrector time integration scheme. We evaluate our model us-
ing idealized, two material problems using either ideal-gas or stiffened-gas equations
of state and compare these results to those computed with the method of Tipton and
with corresponding pure-material calculations.
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1 Introduction

Multi-material Lagrangian hydrodynamics of strength-free materials continues to present
numerous open issues, even in one dimension. We focus on the problem of closing a sys-
tem of equations for a two-material cell under the assumption of a single velocity model.
We treat the constituents in these multi-material cells as distinct, i.e., we do not consider
so-called “mixture” models, often associated with multi-phase flow, in which the individ-
ual species in a computational zone are modeled as fully or partially intermingled. The
multi-material cells we consider invariably arise in multi-material Arbitrary Lagrangian-
Eulerian (ALE) methods [13, 23], where the results of Lagrangian hydrodynamics are
projected onto a new mesh during the remap phase, thereby making a Lagrangian step
with a mixed cell a necessity. We consider three main design principles that govern clo-
sure models of interest. The first principle is preservation of contacts; this implies that if
all materials in a mixed cell are initially at the same pressure, then that pressure does not
change due to the closure model. The second principle is that of pressure equilibration;
that is, after some transition time (possibly but not necessarily a single timestep), all pres-
sures in the mixed cell equilibrate. The third principle is the exact conservation of total
energy. We assume that a separate set of material properties is maintained for each ma-
terial in every multi-material cell, together with the materials’ volume fractions, which
can be used to reconstruct material interfaces inside a mixed cell. The main challenge
is to accurately assign the thermodynamic states of the individual material components
together with the nodal forces that such a zone generates, pursuant to our design princi-
ples and despite a lack of detailed information about the velocity distribution within such
cells. In particular, for the calculation of both the equation of state (EOS) and the resulting
pressure forces, it is important that the calculation of the internal energy be accurate.

There are several existing models for this problem. In one class of methods (see, e.g.,
Barlow [4], Delov & Sadchikov [9], Goncharov & Yanilkin [11]), one estimates the velocity
normal to the interface between materials and then approximates the change in the vol-
ume for each material, with internal energy updated separately for each material from
its own pdV equation. A common pressure for a mixed cell, which is used in the mo-
mentum equation, is computed using the equation of total energy conservation. Delov &
Sadchikov [9] and Goncharov & Yanilkin [11] introduce an exchange of internal energy
between the materials inside a mixed cell, thereby allowing some freedom in the defini-
tion of the common pressure. Other multi-material models impose either instantaneous
pressure equilibration (such as that of Lagoutière [18] and Després & Lagoutière [10]) or
ascribe an implicit mechanism for pressure relaxation (such as described by Tipton [30]
and summarized by Shashkov [28]).

We restrict our attention to the approach in which the change in heat in the constituent
materials in the mixed cell is posited to be equal, following Lagoutière [18] and Després
& Lagoutière [10]. Under this assumption, the mixed-cell model can be cast as four equa-
tions in four unknowns, consisting of the updated values of the specific internal energy
and the specific volume for each of the two materials in the mixed cell. A solution to this


