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Abstract. The multi-symplectic Runge-Kutta (MSRK) methods and multi-symplectic
Fourier spectral (MSFS) methods will be employed to solve the fourth-order
Schrödinger equations with trapped term. Using the idea of split-step numerical
method and the MSRK methods, we devise a new kind of multi-symplectic integra-
tors, which is called split-step multi-symplectic (SSMS) methods. The numerical exper-
iments show that the proposed SSMS methods are more efficient than the conventional
multi-symplectic integrators with respect to the the numerical accuracy and conserva-
tion perserving properties.
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1 Introduction

Considering the effect of small fourth-order dispersion term in the propagation of intense
laser beams in a bulk medium with Kerr nonlinearity, Karpman and Shagalov established
the fourth-order Schrödinger equations [1–3]

iut+uxxxx+ h̄′(|u|2)u=0, i=
√
−1. (1.1)
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If an external trap potential is considered, the equation becomes the fourth-order nonlin-
ear Schrödinger equation with a trapped term (FNSETT). In this work, we investigate the
multi-symplectic integrators of the FNSETT in the form

iut+uxxxx+6|u|2u−150(sin2 x)u=0, (x,t)∈ (0,L)×(0,T], (1.2)

u(x,0)=u0(x), x∈ [0,L], (1.3)

u(x,t)=u(x+L,t), t∈ [0,T], (1.4)

where u0(x) is a prescribed complex-valued function. The equation focuses on the most
important physical effects, including dispersion, nonlinearity, and effective potential, and
in the physical context, issues like Bose-Einstein condensate, nonlinear optics. The poten-
tial term g(x)=−150sin2 x is to localize the wave around the origin. This model is a spe-
cial case of the non-self-adjoint nonlinear high-order Schrödinger equation with trapped
term [4–7]

i
∂u

∂t
+(−1)mα

∂2mu

∂x2m
+

∂h̄(|u|2)
∂|u|2 u+g(x)u=0, (1.5)

with m=2, α=1, g(x)=−150sin2 x, h̄(|u|2)= |u|4.
For the initial-boundary value problem (1.2)-(1.4), we have the following proposition.

Proposition 1.1. The solution of the initial-boundary value problem (1.2)-(1.4) has at least two
conserved quantities:

1. Charge conservation law

Q(t)=
∫ L

0
|u(x,t)|2dx=

∫ L

0
|u0(x)|2dx=Q(0); (1.6)

2. Energy conservation law

E(t)=
∫ L

0
[|uxx|2+3|u|4−150(sin2 x)|u|2]dx=E(0). (1.7)

Symplectic integrators have received much attention over the last decade, see, e.g.,
[8–12]. Recently, symplectic integrators had been generalized from Hamiltonian ODEs
to Hamiltonian PDEs (HPDEs), see, e.g., [13–15]. We call this kind of numerical method
multi-symplectic integrators. Many researchers are attracted by the methods for its in-
commensurable advantages over others for HPDEs in structure-preserving, such as in
local conservation properties and in long-term numerical simulation. The method has
been applied to many important physical and mathematical models, such as Schrödinger
equations [16, 17], wave equations [18], Dirac equations [20], etc. It is suggested that
concatenating a pair of symplectic Runge-Kutta (SRK) methods both in space and time,
or concatenating an SRK method in time and Fourier spectral method in space lead to


