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Abstract. High order finite difference approximations are derived for a one-
dimensional model of the shifted wave equation written in second-order form. The
domain is discretized using fully compatible summation by parts operators and the
boundary conditions are imposed using a penalty method, leading to fully explicit
time integration. This discretization yields a strictly stable and efficient scheme. The
analysis is verified by numerical simulations in one-dimension. The present study is
the first step towards a strictly stable simulation of the second-order formulation of
Einstein’s equations in three spatial dimensions.
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1 Introduction

The present study is focused towards the numerical solution of Einstein’s equations,
which describe processes such as binary black holes and neutron star collisions. The out-
come of this kind of simulations is considered to be crucial for the successful detection
and interpretation of gravitational waves, expected to be measured by laser interferom-
eters such as LIGO, GEO600, LISA and others. In turn, measurement of gravitational
waves will constitute a strong, direct verification of Einstein’s theory, and open a new
window to the universe.
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In the harmonic description of general relativity, the principal part of Einstein’s equa-
tions reduces to 10 curved space wave equations for the components of the space-time
metric. Although these equations can be reduced to first-order symmetric hyperbolic
form [7], this has the disadvantage of introducing auxiliary variables with their con-
straints and boundary conditions. The reduction to first-order form is also less attractive
from a computational point of view considering the efficiency and accuracy [12, 19]. The
reasons for solving the equations on first-order form are most likely related to the matu-
rity of CFD, which has evolved during the last 40 years. I.e., many of the stability issues
for first-order hyperbolic problems have already been addressed.

Wave-propagation problems frequently require farfield boundaries to be positioned
many wavelengths away from the disturbance source (for example binary black holes).
To efficiently simulate these problems requires numerical techniques capable of accu-
rately propagating disturbances (such as a gravitational wave) over long distances. It
is well know that high-order finite difference methods (HOFDM) are ideally suited for
problems of this type. (See the pioneering paper by Kreiss and Oliger [14]). Not all
high-order spatial operators are applicable, however. For example, schemes that are G-
K-S stable [9], while being convergent to the true solution as ∆x → 0, may experience
non-physical solution growth in time [5], thereby limiting their efficiency for long-time
simulations. Thus, it is imperative to use HOFDMs that do not allow growth in time;
a property termed “strict stability” [8]. Deriving strictly stable, accurate and conserva-
tive HOFDM is a significant challenge that has received considerable past attention. (For
example, see references [1, 3, 10, 11, 16, 31–33, 38]).

The energy method (see for example [8]) is a common technique to derive well-
posedness for initial-boundary value problems. A very powerful way of obtaining prov-
able strictly stable numerical approximations is to mimic the underlying continuous en-
ergy estimate. A well-proven HOFD methodology that ensures this is the summation-
by-parts simultaneous approximation term (SBP-SAT) method. The SBP-SAT method
simply combines finite difference operators that satisfy a summation-by-parts (SBP) for-
mula [13], with physical boundary conditions implemented using either the Simultane-
ous Approximation Term (SAT) method [5], or the projection method [19, 28, 29]. Exam-
ples of the SBP-SAT approach can be found in references [6,15,17,18,20,22,24–27,34,35].

Deriving strictly stable numerical simulations of Einstein’s equations on second-order
form has proven to be a very difficult task [2, 4, 23, 37], especially for HOFDMs. In the
present study this situation is illustrated by the shifted wave equation in 1-D that cap-
tures most of the stability issues without introducing unnecessary complications. This
1-D problem was analyzed in [37] for a second-order accurate approximation.

For the Einstein’s equations (and the shifted wave equation) written on second-order
form, the regular energy estimate fails in the most interesting applications, which re-
quired the introduction of a modified energy estimate. The existing SBP-SAT method
(here referred to as the standard SBP-SAT method) is based on the regular energy esti-
mates, which means that the standard SBP-SAT method has to be modified in order to fit
the mentioned modified energy estimate.


