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To the memory of David Gottlieb

Abstract. In this exploratory study, we present a new method of approximating a large
system of ODEs by one with fewer equations, while attempting to preserve the essen-
tial dynamics of a reduced set of variables of interest. The method has the following
key elements: (i) put a (simple, ad-hoc) probability distribution on the phase space
of the ODE; (ii) assert that a small set of replacement variables are to be unknown lin-
ear combinations of the not-of-interest variables, and let the variables of the reduced
system consist of the variables-of-interest together with the replacement variables; (iii)
find the linear combinations that minimize the difference between the dynamics of the
original system and the reduced system. We describe this approach in detail for linear
systems of ODEs. Numerical techniques and issues for carrying out the required min-
imization are presented. Examples of systems of linear ODEs and variable-coefficient
linear PDEs are used to demonstrate the method. We show that the resulting approx-
imate reduced system of ODEs gives good approximations to the original system. Fi-
nally, some directions for further work are outlined.
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1 Introduction

The framework of the problem studied in this paper is a system of linear ordinary differ-
ential equations (ODEs)

zt = Fz=
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]

, t>0, (1.1)
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with appropriate initial conditions z(t=0), and where z=(x,y)∈Rm+n is divided into a set
of resolved variables x∈Rm that one wants to observe or calculate, and a set of unresolved
variables y∈Rn that one doesn’t need to observe, but which the dynamics of the resolved
variables x depend on. Furthermore, it may be that m≪ n or even n infinite, in which
case it will not be computationally feasible to solve the full system of equations.

The goal of this study is to approximate (model) the dynamics of x in a computation-
ally efficient way, with useful accuracy, without actually including the full set of unre-
solved quantities y in the modeling.

This is desirable in many situations: for example, many partial differential equations
(PDEs), when discretized into a system of ODEs, require millions of degrees of freedom
(DOF) to adequately approximate the dynamics. However, most of these DOF are usu-
ally of no interest. Examples of such PDEs include weather simulations and many sim-
ulations of fluid or aerodynamic flows. In the flow-around-an-aircraft example, an engi-
neer would be mainly interested in bulk features such as the total lift and drag, or average
vorticity as a function of time. A flow field detailed enough to actually resolve all of the
dynamics would not be needed in many situations. Calculating solutions to these equa-
tions can require large amounts of computing resources, and a system reduction method
such as the one studied here has the potential to reduce these resource required, or allow
the fast solution of more complex problems.

One approach for system reduction has been developed by Chorin et al. [1, 2] and
Gottlieb et al. [3], which has been called the t-system or Optimal Prediction. An overview
of other approaches to the problem can be found in [4].

Much previous work, including much work by Chorin and associates, has revolved
around approximate systems having only x as the state variables and eliminating the
unresolved variables y. So then x has to somehow represent the dynamics of both the
resolved and unresolved variables. Any information about the unresolved dynamics in
the t-system must be the result of resolved-dynamics information being discarded or
changed. This seems like a limited approach, that could not achieve high accuracy. We
propose adding a set of ”replacement variables” to the resolved variables to contain the
unresolved-dynamics information. This set of variables would be smaller than the actual
number of unresolved variables, since we only need to contain the part of the unresolved
dynamics that effects the resolved variables. In Section 2, the framework of the ORV
method is described in details and the expected error with ORV derived. In Section 3,
the complicated form of the modeling error equation and its gradient which will be used
later for finding the best replacement variables R, are studied and simplified. Several
ways for normalizing the ORV error and orthogonality constraints of the ORV system are
also discussed. The techniques of Lagrange multipliers and unconstrained minimization
used for minimizing the expected error of the ORV system are presented in Section 4.
In Section 5, numerical results for random linear systems of ODEs and a scalar variable-
coefficient PDE (a heat equation), are presented to illustrate the potential and issues in
the ORV method. Discussion and conclusions are given in Section 6. We outline some
directions and questions for future research in Section 7.


