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Abstract. In this work we consider a general notion of distributional sensitivity, which
measures the variation in solutions of a given physical/mathematical system with re-
spect to the variation of probability distribution of the inputs. This is distinctively
different from the classical sensitivity analysis, which studies the changes of solutions
with respect to the values of the inputs. The general idea is measurement of sensitivity
of outputs with respect to probability distributions, which is a well-studied concept
in related disciplines. We adapt these ideas to present a quantitative framework in
the context of uncertainty quantification for measuring such a kind of sensitivity and
a set of efficient algorithms to approximate the distributional sensitivity numerically.
A remarkable feature of the algorithms is that they do not incur additional computa-
tional effort in addition to a one-time stochastic solver. Therefore, an accurate stochas-
tic computation with respect to a prior input distribution is needed only once, and
the ensuing distributional sensitivity computation for different input distributions is a
post-processing step. We prove that an accurate numerical model leads to accurate cal-
culations of this sensitivity, which applies not just to slowly-converging Monte-Carlo
estimates, but also to exponentially convergent spectral approximations. We provide
computational examples to demonstrate the ease of applicability and verify the con-
vergence claims.
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1 Introduction

Uncertainty quantification (UQ) has become an important tool for modelling in recent
years. Many physical systems have uncertainties caused by unknown parameters in the
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model or by measurement noise plaguing experiments. In such cases, it is critical to
understand and predict how the uncertainty affects quantities of interest (QoI) of the
systems. This introduces a new paradigm for scientific computing and extends the tradi-
tional deterministic simulations to stochastic simulations.

One of the major challenges for stochastic computation and UQ is the simulation cost,
as the dimensionality of simulations depends on the total number of random variables
that one employs to parameterize the inputs. The larger the dimensionality the higher the
cost, (the curse of dimensionality). To circumvent the difficulty, it is crucial to conduct
sensitivity analysis (SA) prior to simulations. The goal of the sensitivity analysis is to
determine which input variables have notable effects on the QoI and eliminate those
with negligible effects on the simulation.

In this work we discuss a different kind of sensitivity analysis-distributional sensitiv-
ity analysis (DSA), which is intended to quantify the impact on the QoI with respect to
changes in the probability distribution of the inputs. This is motivated by the fact that in
many cases there is not sufficient data or evidence to fully specify the probability distri-
bution of the inputs. Such kind of uncertainty is often referred to as epistemic uncertainty,
as opposed to aleatory uncertainty where probabilistic information about the inputs is fully
specified. For many practical systems, uncertain inputs often present themselves in the
form of epistemic uncertainty, and acquiring more information to specify their proba-
bility can be a (highly) costly, and sometimes impossible, task. One of the immediate
goals of DSA is to provide a guideline to direct the modeling effort. For inputs with large
distributional sensitivity (DS), more effort will be required to acquire their probabilistic
information; for inputs with small and negligible DS, it is acceptable to specify their dis-
tribution with something of computational convenience. By doing so, we can reduce the
total number of epistemic variables to a minimum. It is worth remarking on the differ-
ence between the DS and the traditional sensitivity. While an input with small sensitivity
in the traditional sense naturally implies small DS, there is no direct association on the
other hand, i.e., an input with large sensitivity in the traditional sense does not neces-
sarily imply large DS, and vice versa. Therefore, while the traditional SA is a necessary
step to reduce the computational burden for (aleatory) stochastic simulations, the DSA is
a necessary step to reduce the simulation effort for dealing with epistemic uncertainty.

Indeed, the underlying concern of DSA is the study of how assumptions about proba-
bility densities affects outputs. Unsurprisingly, this notion already exists in related fields;
one manifestation of this is the ”score function” approach [1, 13]. The score function
method assumes a parameterization of a family of input distributions and primarily uses
a Monte-Carlo estimate to compute sensitivities. The ”what-if” problem, extrapolation
of the QoI values to unsimulated density locations, is not a consideration of this paper.
The spirit of DSA is also captured in the study of local/global sensitivity analysis from
Bayesian statistics; this analysis studies the effect that the assumed prior has on the re-
sulting posterior [4, 9, 14]. Our problem is not in the context of Bayesian statistics; in
particular we are not concerned with updating our assumed ”prior”.

Since computational effort is of great concern in stochastic computations, it is desir-


