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Abstract. The main purpose of this paper is to analyze solutions to a

fully nonlinear parabolic equation arising from the problem of optimal portfolio

construction. We show how the problem of optimal stock to bond proportion

in the management of pension fund portfolio can be formulated in terms of the

solution to the Hamilton–Jacobi–Bellman equation. We analyze the solution

from qualitative as well as quantitative point of view. We construct useful

bounds of solution yielding estimates for the optimal value of the stock to bond

proportion in the portfolio. Furthermore we construct asymptotic expansions of

a solution in terms of a small model parameter. Finally, we perform sensitivity

analysis of the optimal solution with respect to various model parameters and

compare analytical results of this paper with the corresponding known results

arising from time-discrete dynamic stochastic optimization model.
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1. Introduction and problem formulation

In this paper we are analyzing solutions to the Hamilton–Jacobi–Bellman equa-
tion arising from stochastic dynamic programming for optimal decision between
stock and bond investments during accumulation of pension savings. Such an op-
timization problem often arises in optimal dynamic portfolio selection and asset
allocation policy for an investor who is concerned about the performance of a port-
folio relative to the performance of a given benchmark (see e.g. [18, 19, 20, 21, 5,
3, 4, 8, 10]).

Consider the function V (t, y), (t, y) ∈ D, defined on a domain D = [0, T )×(0,∞)
and satisfying the following fully nonlinear Hamilton–Jacobi–Bellman parabolic
partial differential equation:

(1a)
∂V

∂t
+ max

θ∈∆t

(

Aε(θ, t, y)
∂V

∂y
+

1

2
B2(θ, t, y)

∂2V

∂y2

)

= 0, (t, y) ∈ D,

and the terminal condition at t = T ,

(1b) V (T, y) = U(y), y ∈ (0,∞),
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where U = U(d) is a smooth strictly increasing concave bounded function and ε is
a small parameter, 0 < ε≪ 1. Moreover, we suppose that the following additional
requirements are met:

(1) the admissible set ∆t = [lt, ut] ⊂ R for all 0 ≤ t ≤ T ;
(2) the function ∆t ∋ θ 7→ Aε(θ, t, y) ∈ R is (not necessarily strictly) concave

in the θ variable and it is function increasing at θ = lt;
(3) the function ∆t ∋ θ 7→ B2(θ, t, y) is strictly convex in the θ variable and it

is decreasing at θ = lt.

Let us suppose for a moment that the function y 7→ V (t, y) is an increasing and
strictly concave function in the y variable. Then applying the first order necessary
condition on the maximum of the function

θ 7→ Aε(θ, t, y)
∂V

∂y
+

1

2
B2(θ, t, y)

∂2V

∂y2

we obtain the following implicit equation for θ̂, the maximizer of the above function:

(2) G(θ̂, t, y) = −
∂V
∂y

(t, y)

y ∂2V
∂y2 (t, y)

where G(θ, t, y) =
1

2

∂(B2)
∂θ

y ∂Aε

∂θ

.

Since the requirements (2)–(3) guarantee the increase of the function G(θ, t, y) in

the θ variable, there exists the inverse of G and thus the unique θ̂ = θ̃(t, y) such
that

θ̂(t, y) = G−1

(

−
(

∂V

∂y
(t, y)

)

/

(

y
∂2V

∂y2
(t, y)

))

.

Then the optimal value of θ solving (1a) with the terminal condition (1b) is given
by

(3) θ∗(t, y) = min{ut, θ̂(t, y)}.
The problem (1a) can be now treated as a fully nonlinear parabolic partial differ-
ential equation of the form:

(4a)
∂V

∂t
+ F(t, y, V,

∂V

∂y
,
∂2V

∂y2
) = 0

where

(4b) F(t, y, V,
∂V

∂y
,
∂2V

∂y2
) = Aε(θ

∗(t, y), t, y)
∂V

∂y
+

1

2
B2(θ∗(t, y), t, y)

∂2V

∂y2

where θ∗ is given by (3) and θ̂(t, y) = G−1
(

−
(

∂V
∂y

(t, y)
)

/
(

y ∂2V
∂y2 (t, y)

))

depends

itself on the solution V and its derivatives. The solution is subject to the terminal
condition V (T, y) = U(y) where V = V (t, y) for y > 0 and 0 ≤ t ≤ T . Furthermore,
∂F
∂q

> 0.

The application of this study to financial markets, particularly to the theory of
the optimal portfolio construction, has a strong impact on the special choice of the
functions Aε and B used in the original formulation of the studied problem (1a).
Hence let us consider

(5) Aε(θ, t, y) = ε+ [µt(θ) − βt]y, B(θ, t, y) = σt(θ)y,

where {βt; 0 ≤ t ≤ T }, {µt(θ); 0 ≤ t ≤ T } and {σt(θ); 0 ≤ t ≤ T } are assumed to
be given deterministic processes for any choice of the control parameter θ ∈ ∆t.

Moreover, if V (t, y) is strictly convex and increasing in the y variable, then with
regard to assumptions (2)–(3) the monotonicity of the function θ 7→ G(θ, t, y) is


