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Abstract. The Boltzmann equation (BE) for gas flows is a time-dependent nonlinear
differential-integral equation in 6 dimensions. The current simplified practice is to lin-
earize the collision integral in BE by the BGK model using Maxwellian equilibrium
distribution and to approximate the moment integrals by the discrete ordinate method
(DOM) using a finite set of velocity quadrature points. Such simplification reduces
the dimensions from 6 to 3, and leads to a set of linearized discrete BEs. The main
difficulty of the currently used (conventional) numerical procedures occurs when the
mean velocity and the variation of temperature are large that requires an extremely
large number of quadrature points. In this paper, a novel dynamic scheme that re-
quires only a small number of quadrature points is proposed. This is achieved by
a velocity-coordinate transformation consisting of Galilean translation and thermal
normalization so that the transformed velocity space is independent of mean veloc-
ity and temperature. This enables the efficient implementation of Gaussian-Hermite
quadrature. The velocity quadrature points in the new velocity space are fixed while
the correspondent quadrature points in the physical space change from time to time
and from position to position. By this dynamic nature in the physical space, this new
quadrature scheme is termed as the dynamic quadrature scheme (DQS). The DQS was
implemented to the DOM and the lattice Boltzmann method (LBM). These new meth-
ods with DQS are therefore termed as the dynamic discrete ordinate method (DDOM)
and the dynamic lattice Boltzmann method (DLBM), respectively. The new DDOM
and DLBM have been tested and validated with several testing problems. Of the same
accuracy in numerical results, the proposed schemes are much faster than the con-
ventional schemes. Furthermore, the new DLBM have effectively removed the incom-
pressible and isothermal restrictions encountered by the conventional LBM.
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1 Introduction

It has been well established that gas flows can be described by the Boltzmann equation
(BE) derived from statistical mechanics based on kinetic theory of molecules. However,
the Boltzmann equation is a time-dependent nonlinear differential-integral equation in 6
dimensions whose solution is very complicated, difficult and rare. The currently more
simplified approach is to linearize the collision integral in BE by the BGK model with
an equilibrium Maxwellian distribution and to approximate the moment integrals by the
discrete ordinate method (DOM) [1–4] using a finite set of velocity quadrature points.
This reduces the dimensions of BE from 6 to 3, and leads to a finite set of linearized
Boltzmann equations which can be solved numerically.

The discrete ordinate method (DOM), that had been used long to solve Boltzmann
equation for gas flows, was pioneered by Broadwell [1, 2] who employed a very small
set of discrete velocities but was able to produce shocks. With the increase in comput-
ing power of computer in the last two decades, the DOM has attracted great attention
for solving the Boltzmann equation using a large number of discrete velocities. All these
early treatments made use of discretization with quadrature points in the velocity space
to construct a discrete collision mechanism on the each grid node [5, 6]. A quadrature
using fixed velocity points in real physical space to approximate integrals could not
be implemented efficiently for obtaining hydrodynamic moments, particularly for high
Mach number flows. The difficulty stems from the fact that the accurate integration of
Maxwellian distribution depends highly on the temperature and the mean velocity. This
requires the use of large number of quadrature points to maintain the integration accu-
racy when Mach number is high. As a result, huge computational resources are required
to capture the flow characteristics.

In this paper, a dynamic quadrature scheme (DQS) for DOM that requires only small
quadrature points to approximate accurately the moments of velocity distribution func-
tion is proposed. This is achieved through a velocity-coordinate transformation featured
with Galilean translation and thermal normalization. The transformation renders the
normalized Maxwellian equilibrium distribution with directional isotropy and spatial
homogeneity, which enable the accurate and efficient implementation of the Gaussian-
Hermite quadrature. The velocity quadrature points in the transformed velocity space
are fixed while the correspondent velocity quadrature points in the physical space change
from time to time and from position to position. By this dynamic nature in the physical
space, we term this new scheme as the dynamic quadrature scheme (DQS). A discrete
ordinate method (DOM) with the DQS is then termed as the dynamic discrete ordinate
method (DDOM).

Lattice Boltzmann method (LBM), which had been developed for decades, is also a
popular and powerful numerical tool to solve the Boltzmann equation for gas flows [7–
10]. The LBM also uses discrete velocity set as the DOM used, except that discrete ve-
locities in LBM are specifically assigned to ensure that a particle leaves one lattice node
always resides on another lattice node. Hence the LBM can be regarded as a subset of


