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Abstract. This work is a follow-up to our previous work [2]. It extends and com-
plements, both theoretically and experimentally, the results presented there. Under
consideration is the homogenization of a model of a weakly random heterogeneous
material. The material consists of a reference periodic material randomly perturbed
by another periodic material, so that its homogenized behavior is close to that of the
reference material. We consider laws for the random perturbations more general than
in [2]. We prove the validity of an asymptotic expansion in a certain class of settings.
We also extend the formal approach introduced in [2]. Our perturbative approach
shares common features with a defect-type theory of solid state physics. The compu-
tational efficiency of the approach is demonstrated.
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1 Introduction

Our purpose is to follow up on our previous study [2]. Let us recall, for consistency, that
we consider homogenization for the following elliptic problem
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(1.1)
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where the tensor Aper models a reference Z
d-periodic material which is randomly per-

turbed by the Z
d-periodic tensor Cper, the stochastic nature of the problem being en-

coded in the stationary ergodic scalar field bη (the latter getting small when η vanishes).
We have studied in [2] the case of a perturbation that has a Bernoulli law with parameter
η, meaning that bη is equal to 1 with probability η and 0 with probability 1−η. In the
present work, we address more general laws. The common setting is that all the per-
turbations we consider are, to some extent, rare events which, although rare, modify the
homogenized properties of the material. Our approach is a perturbative approach, and
consists in approximating the stochastic homogenization problem for

Aη(x,ω)=Aper(x)+bη (x,ω)Cper

using the periodic homogenization problem for Aper. In short, let us say that our main
contribution is to derive an expansion

A∗
η =A∗

per+ηĀ∗
1+η2 Ā∗

2+o(η2), (1.2)

where A∗
η and A∗

per are the homogenized tensors associated with Aη and Aper respectively,

and the first and second-order corrections Ā∗
1 and Ā∗

2 can be, loosely speaking, computed
in terms of the microscopic properties of Aper and Cper and the statistics of second order
of the random field bη . The formulation is made precise in [2] and in Sections 2 and 3
below.

Motivations behind setting (1.1), as well as a review of the mathematical literature on
similar issues and a comprehensive bibliography, can be found in [2]. We complement
our study of the perturbative approach introduced with [2] in two different directions.

In Section 2, we rigorously establish an asymptotic expansion of the homogenized
tensor in a mathematical setting where our input parameter (the field bη in (1.1)) enjoys
appropriate weak convergence properties, as η vanishes, in a reflexive Banach space,
namely a Lebesgue space L∞(D,Lp(Ω)) (with p>1). In such a setting, we are in position
to rigorously prove a first order asymptotic expansion (announced in [3] and precisely
stated in [3, Theorem 2.1] and Theorem 2.1 below) for the homogenization of Aη, using
simple functional analysis techniques very similar to those exposed in [4]. In our Corol-
laries 2.1 and 2.2, the expansion is pushed to second order under additional assumptions.

Our aim in Section 3 is to further extend our formal theory of [2]. Recall that this for-
mal theory, rather than manipulating the random field bη itself, consists in focusing on its
law. We indeed assume that the image measure (the law) corresponding to the perturba-
tion admits an expansion (see (3.3) below) with respect to η in the sense of distributions.
While [2] has only addressed the specific case of a Bernoulli law, we consider here more
general laws and proceed with the same formal derivations. These derivations lead to
a first-order correction Ā∗

1 in (1.2) obtained as the limit when N → ∞ of a sequence of

tensors A∗,N
1 computed on the supercell [−N/2,N/2]d . It is the purpose of Proposition

3.1 to prove the convergence of A∗,N
1 . The second-order term Ā∗

2 is likewise defined, in

Proposition 3.2, as the limit of a sequence of tensors A∗,N
2 when N → ∞. The proof of


