Commun. Comput. Phys. Vol. 12, No. 2, pp. 433-461
doi: 10.4208/ cicp.190211.060811s August 2012

Simulating an Elastic Ring with Bend and Twist by
an Adaptive Generalized Immersed Boundary Method

Boyce E. Griffith! and Sookkyung Lim?*

! Leon H. Charney Division of Cardiology, Department of Medicine, New York
University School of Medicine, 550 First Avenue, New York, New York 10016, USA.
2 Department of Mathematical Sciences, University of Cincinnati, 839 Old
Chemistry Building, Cincinnati, Ohio 45221, USA.

Received 19 February 2011; Accepted (in revised version) 6 August 2011
Available online 20 February 2012

Abstract. Many problems involving the interaction of an elastic structure and a vis-
cous fluid can be solved by the immersed boundary (IB) method. In the IB approach
to such problemes, the elastic forces generated by the immersed structure are applied to
the surrounding fluid, and the motion of the immersed structure is determined by the
local motion of the fluid. Recently, the IB method has been extended to treat more gen-
eral elasticity models that include both positional and rotational degrees of freedom.
For such models, force and torque must both be applied to the fluid. The positional
degrees of freedom of the immersed structure move according to the local linear veloc-
ity of the fluid, whereas the rotational degrees of freedom move according to the local
angular velocity. This paper introduces a spatially adaptive, formally second-order ac-
curate version of this generalized immersed boundary method. We use this adaptive
scheme to simulate the dynamics of an elastic ring immersed in fluid. To describe the
elasticity of the ring, we use an unconstrained version of Kirchhoff rod theory. We
demonstrate empirically that our numerical scheme yields essentially second-order
convergence rates when applied to such problems. We also study dynamical instabil-
ities of such fluid-structure systems, and we compare numerical results produced by

our method to classical analytic results from elastic rod theory.
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1 Introduction

In the 1970’s, Peskin developed the immersed boundary (IB) method to study the fluid
dynamics of heart valves [1,2]. Since then, the IB method has become widely used for
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simulating dynamic problems of fluid-structure interaction in which an elastic structure
is immersed in a viscous incompressible fluid [3]. The IB method uses Lagrangian vari-
ables to describe the motion of the elastic structure and Eulerian variables to describe
the motion of the fluid. In the conventional IB formulation of such problems, the elastic
structure applies forces to the fluid that generally act to alter the fluid motion, and the
structure moves according to the local velocity of the fluid.

More recently, a generalization of the IB method was introduced to study the dynam-
ics of elastic rods that are modeled using a version of Kirchhoff rod theory [4,5]. Kirchhoff
rod theory describes the force and torque generated by an elastic rod in terms of the po-
sition of its center line together with a Lagrangian field of orthonormal director vectors
that are attached to that center line. These director vectors are rotational degrees of free-
dom that account for the bending and twisting of the rod. Such representations are useful
for describing the motion of filamentous structures like DNA and cables [6-8]. To couple
such generalized elasticity models to the fluid within the IB framework, it was necessary
to extend the IB formulation to treat elastic structures that are represented in terms of
both positional and rotational degrees of freedom. The key features of this generalized
IB method are that it applies both the force and the torque generated by the elastic rod
to the fluid, and that the elastic rod moves according to both the local linear and angu-
lar velocities of the surrounding fluid. Specifically, the local linear velocity determines
the motion of the center line, and the local angular velocity determines the rotation of
the orthonormal triad of director vectors attached to the structure. So far, this general-
ized IB method has been used exclusively for problems involving the dynamics of elastic
rods immersed in fluid; however, this generalized IB framework is not restricted to such
structural models, and it may ultimately find use in coupling other elasticity models that
include both positional and rotational degrees of freedom, such as elastic shells, to a sur-
rounding fluid.

The original generalized IB method employed a uniform discretization of the equa-
tions of motion that was only first-order accurate [4,5]. In this work, we introduce an
adaptive, formally second-order accurate version of the method. Our numerical scheme
is based on a discretization approach previously adopted in adaptive versions of the con-
ventional IB method [9-13]. We use a staggered-grid (i.e., maker-and-cell or MAC [14])
version of the IB method, in which the Eulerian fluid pressure is approximated at the
centers of the cells of a locally refined Cartesian grid, and in which the normal compo-
nents of the Eulerian fluid velocity field are approximated at the centers of the faces of
the Cartesian grid cells. Our adaptive three-dimensional discretization is therefore sim-
ilar, but not identical, to the two-dimensional adaptive version of the conventional IB
method described by Roma et al. [9], and to the adaptive three-dimensional IB method
described by Griffith [13]. As discussed by Griffith [15], staggered-grid IB methods ap-
pear to have clear advantages in terms of volume conservation and resolution of pressure
discontinuities when compared to collocated IB discretizations, such as those used in ear-
lier cell-centered adaptive IB methods [10-12].

We assess the convergence properties of our adaptive method via an empirical con-



