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Abstract. In this paper, a discontinuous Galerkin finite element method with interior

penalties for convection-diffusion optimal control problem is studied. A semi-discrete

time DG scheme for this problem is presented. We analyze the stability of this scheme,

and derive a priori and a posteriori error estimates for both the state and the control

approximation.
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1. Introduction

Finite element approximation of optimal control problems has been an important topic
in engineering design work. There has been extensive theoretical and numerical stud-
ies for standard finite element approximation of various optimal control problems. For
instance, for the optimal control problems governed by some linear elliptic or parabolic
state equations, a priori error estimates of the finite element approximation were estab-
lished long ago, see [1, 2, 3, 4, 5]. Furthermore, a priori error estimates were established
for the finite element approximation of some important flow control problems in [6]. Some
recent progress in a priori error estimates can be found in [7, 8] and in [9, 10, 11, 12],
for a posteriori error estimates. Systematic introduction of the finite element method for
PDEs and optimal control problems can be found in, for example, [13], [14] and [15].

In recent years, the discontinuous Galerkin methods have been proved very useful in
solving a large range of computational fluid problems ([16, 17, 18]). They are preferred
over standard continuous Galerkin methods because of their flexibility in approximat-
ing globally rough solutions, their local mass conservation, their possible definition on
unstructured meshes, their potential for error control and mesh adaptation.

The idea of using penalty terms in a finite element method is not new. Baker [19] was
the first one who used interior penalty with nonconforming elements for elliptic equa-
tions. Douglas and Dupont [20] analyzed a method which used interior penalties on the
derivatives with conforming elements for linear elliptic and parabolic problems. Inspired
by [19], Wheeler [21] presented an interior penalty method for second order linear el-
liptic equations. Closest to [21], Arnold [22] formulated a semi-discrete discontinuous
Galerkin method with interior penalty for second order nonlinear parabolic equations.
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These methods [20, 21, 22] generalized a method by Nitsche [23] for treating Dirichlet
boundary condition by the introduction of penalty terms on the boundary of the do-
main. Applications of these methods to flow in porous media were presented by Douglas,
Wheeler, Darlow and Kendall in [24]. These methods frequently referred to as interior
penalty Galerkin schemes.

In general, penalty terms are weighted L2 inner products of the jumps in the function
values across element edges. The primary motivation of including interior penalties is
to impose approximate continuity. These terms enable closer approximation of solutions
which varies in character from one element to another and allow the incorporation of
partial knowledge of the solution into the scheme. Numerical experiments have clearly
demonstrated the value of penalties for solving certain problems (see, e.g., [20]). New
applications of discontinuous Galerkin method with interior penalties to nonlinear para-
bolic equations were introduced and analyzed by Rivière and Wheeler ([17, 25, 26]). It
was shown that the method in ([17, 25, 26]) was elementwise conservative, and a priori
and a posteriori error estimates in higher dimensions were derived.

Optimal control for convection-diffusion equation is widely met in practical applica-
tions. For example, in Environmental Sciences, some phenomena modelled by linear
convection-diffusion partial differential equations are often studied to investigate the dis-
tribution forecast of pollutants in water or in atmosphere. In this context it might be
of interest to regulate the source term of the convection-diffusion equation so that the
solution is as near as possible to a desired one, e.g., to operate the emission rates of
industrial plants to keep the concentration of pollutants near (or below) a desired level.
This problem can be conveniently accommodated in the optimal control framework for
convection-diffusion equation. Some existing works ([27, 28, 29, 30]) focus on the sta-
tionary convection dominated optimal control problem. They used several stabilization
methods to improve the approximation properties of the pure Galerkin discretization
and to reduce the oscillatory behavior, e.g SUPG method in [27], stabilization on the
Lagrangian functional method in [28], reduced basis (RB) technique in [29]. However to
our best knowledge, there has been a lack of proper study for general time-dependent
convection-diffusion optimal control problem.

The purpose of this paper is to extend the discontinuous Galerkin method with interior
penalties in [17, 22] to time-dependent convection-diffusion optimal control problem. A
semi-discrete time DG scheme for this problem is presented. The first difficulty for
our problem is to derive the discretization of the co-state equation and the optimality
conditions. We first establish the semi-discrete time DG scheme for the state equation,
prove the stability and the existence of this scheme, then apply the theory of optimal
control problem (see, [31]) to this scheme for deriving the discretization of the co-state
equation and the optimality conditions. The DG scheme of state equation is complicated
so that it is much more difficult to derive the discretized co-state equation, which is
quite complicated. The complexity of the DG schemes of the state and the co-state
equation also leads to the difficulties in deriving a priori error estimates and a posteriori
error estimates later. To our knowledge, this paper appears to be the first trial to
approximate convection-diffusion optimal control problem by using the Discontinuous
Galerkin method with interior penalties.

The outline of the paper is as follows. In Section 2, we first briefly introduce convection-
diffusion optimal control problem and optimality conditions. In Section 3, we give some
definitions, then use discontinuous Galerkin method with interior penalties to construct
a semi-discrete approximate scheme for convection-diffusion optimal control problem.


