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CONVERGENCE AND COMPLEXITY OF ADAPTIVE FINITE

ELEMENT METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL

EQUATIONS

LIANHUA HE AND AIHUI ZHOU

Abstract. In this paper, we study adaptive finite element approximations in a

perturbation framework, which makes use of the existing adaptive finite element

analysis of a linear symmetric elliptic problem. We analyze the convergence

and complexity of adaptive finite element methods for a class of elliptic partial

differential equations when the initial finite element mesh is sufficiently fine.

For illustration, we apply the general approach to obtain the convergence and

complexity of adaptive finite element methods for a nonsymmetric problem, a

nonlinear problem as well as an unbounded coefficient eigenvalue problem.
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1. Introduction

The purpose of this paper is to study the convergence and complexity of adaptive
finite element computations for a class of elliptic partial differential equations of
second order and to apply our general approach to three problems: a nonsymmet-
ric problem, a nonlinear problem, and an eigenvalue problem with an unbounded
coefficient. One technical tool for motivating this work is the relationship between
the general problem and a linear symmetric elliptic problem, which is derived from
some perturbation arguments (see Theorem 3.1 and Lemma 3.1).

Since Babuška and Vogelius [3] gave an analysis of an adaptive finite element
method (AFEM) for linear symmetric elliptic problems in one dimension, there has
been much work on the convergence and complexity of adaptive finite element meth-
ods in the literature. For instance, Dörfler [10] presented the first multidimensional
convergence result and Binev, Dehmen, and DeVore [5] showed the first complexity
work, which have been improved and generalized in [5, 6, 9, 12, 13, 18, 19, 20, 21, 25],
from convergence to convergent rate and complexity. For a nonsymmetric problem,
in particular, Mekchay and Nochetto [18] imposed a quasi-orthogonality property
instead of the Pythagoras equality to prove the convergence of AFEM while Morin,
Siebrt, and Veeser [21] showed the convergence of error and estimator simultane-
ously with the strict error reduction and derived the convergence of the estimator by
exploiting the (discrete) local lower but not the upper bound. In this paper, we can
get the convergence and optimal complexity of nonsymmetric problems from our
general approach directly. For a nonlinear problem, Chen, Holst and Xu [7] proved
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the convergence of an adaptive finite element algorithm for Poisson-Boltzmann
equation while we are able to obtain the convergence and optimal complexity of
AFEM for a class of nonlinear problems now. For a smooth coefficient eigenvalue
problem, Dai, Xu, and Zhou [9] gave the convergence and optimal complexity of
AFEM for symmetric elliptic eigenvalue problems with piecewise smooth coeffi-
cients (see, also convergence analysis of a special case [12, 13]). In this paper, we
will derive similar results for an unbounded coefficient eigenvalue problem from our
general conclusions, too. We mention that a similar perturbation approach was
used in [9].

This paper is organized as follows. In Section 2, we review some existing results
on the convergence and complexity analysis of AFEM for the typical problem. In
Section 3, we generalize results to a general model problem by using a perturbation
argument when the initial finite element mesh is sufficiently fine. In Section 4 and
Section 5, we provide three typical applications for illustration, including theory
and numerics.

2. Adaptive FEM for a typical problem

In this section, we review some existing results on the convergence and complex-
ity analysis of AFEM for a boundary value problem in the literature.

Let Ω ⊂ R
d(d ≥ 2) be a bounded polytopic domain. We shall use the standard

notation for Sobolev spaces W s,p(Ω) and their associated norms and seminorms,
see, e.g., [1, 8]. For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) :
v |∂Ω= 0}, where v |∂Ω= 0 is understood in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω.
The space H−1(Ω), the dual space of H1

0 (Ω), will also be used. Throughout this
paper, we shall use C to denote a generic positive constant which may stand for
different values at its different occurrences. We will also use A <∼ B to mean that

A ≤ CB for some constant C that is independent of mesh parameters. All constants
involved are independent of mesh sizes.

2.1. A boundary value problem. Consider a homogeneous boundary value
problem:

(1)

{
Lu := −∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω,

where A : Ω → R
d×d is piecewise Lipschitz over initial triangulation T0 and sym-

metric positive definite with smallest eigenvalue uniformly bounded away from 0
and f ∈ L2(Ω).

Remark 2.1. The choice of homogeneous boundary condition is made for ease of
presentation, since similar results are valid for other boundary conditions [6].

The weak form of (1) reads: find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω),(2)

where a(·, ·) = (A∇·,∇·). It is seen that a(·, ·) is bounded and coercive on H1
0 (Ω),

i.e., for any w, v ∈ H1(Ω) there exist constants 0 < ca ≤ Ca < ∞ such that

|a(w, v)| ≤ Ca‖w‖1,Ω‖v‖1,Ω and ca‖v‖21,Ω ≤ a(v, v) ∀w, v ∈ H1
0 (Ω).

The energy norm ‖ · ‖a,Ω , which is equivalent to ‖ · ‖1,Ω , is defined by ‖w‖a,Ω =√
a(w,w) . It is known that (2) is well-posed, that is, there exists a unique solution

for any f ∈ H−1(Ω).


