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Abstract. A new representation of spatio-temporal random processes is proposed in
this work. In practical applications, such processes are used to model velocity fields,
temperature distributions, response of vibrating systems, to name a few. Finding an
efficient representation for any random process leads to encapsulation of information
which makes it more convenient for a practical implementations, for instance, in a
computational mechanics problem. For a single-parameter process such as spatial or
temporal process, the eigenvalue decomposition of the covariance matrix leads to the
well-known Karhunen-Loève (KL) decomposition. However, for multiparameter pro-
cesses such as a spatio-temporal process, the covariance function itself can be defined
in multiple ways. Here the process is assumed to be measured at a finite set of spatial
locations and a finite number of time instants. Then the spatial covariance matrix at
different time instants are considered to define the covariance of the process. This set
of square, symmetric, positive semi-definite matrices is then represented as a third-
order tensor. A suitable decomposition of this tensor can identify the dominant com-
ponents of the process, and these components are then used to define a closed-form
representation of the process. The procedure is analogous to the KL decomposition for
a single-parameter process, however, the decompositions and interpretations vary sig-
nificantly. The tensor decompositions are successfully applied on (i) a heat conduction
problem, (ii) a vibration problem, and (iii) a covariance function taken from the liter-
ature that was fitted to model a measured wind velocity data. It is observed that the
proposed representation provides an efficient approximation to some processes. Fur-
thermore, a comparison with KL decomposition showed that the proposed method is
computationally cheaper than the KL, both in terms of computer memory and execu-
tion time.
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1 Introduction

In a probabilistic treatment of uncertainties in analyzing and designing physical systems,
random processes are used to describe and model various parameters and phenomena.
Sources of these uncertainties can be attributed to insufficient data, variability in man-
ufacturing process, error incurred during mathematical idealization of the problem, to
mention a few. Let (Ω,F ,µ) denote a probability space where Ω denotes the set of ele-
mentary events θ, F denotes a σ-algebra on this event set, and µ denotes the probability
measure. Let x∈R

d denote a spatial location where d= 1,2 or 3, and t∈R
+ denote the

time. Then the heterogeneity of Young’s modulus of a solid can be modeled as a spatial
random process or field u(x,θ), a time-varying excitation can be modeled as a temporal
random field u(t,θ). Similarly the parameters that are dependent upon both space and
time — such as a velocity field of a fluid in motion, temperature field, dynamic response
of a large structure — can be modeled as spatio-temporal process u(x,t,θ). In this work a
spatially and temporally discrete version of the real-valued processes is considered, that
is, the processes are measured or evaluated at spatial locations xi : i=1,2,··· ,Ns and time
instants tj : j=1,2,··· ,Nt. Therefore, the spatio-temporal processes can now be written in
the following matrix form

U(θ)=











u(x1,t1,θ) u(x1,t2,θ) ··· u(x1,tNt ,θ)
u(x2,t1,θ) u(x2,t2,θ) ··· u(x2,tNt ,θ)

...
...

...
...

u(xNs ,t1,θ) u(xNs ,t2,θ) ··· u(xNs ,tNt ,θ)











∈R
(Ns×Nt) . (1.1)

The spatial and temporal processes can accordingly be expressed in a vector form. How-
ever, this explicit form, which is often needed for computational purpose, is not known
in most practical cases. Either a few realizations of the process or some information about
the covariance is known. Therefore a representation of the process needs to be found us-
ing this available information. In the current work, it is assumed that the only available
information are the mean and spatial covariance for a set of time instants.

Let the mathematical expectation operator
∫

Ω
·dµ(θ) be denoted as E{·}. Then, for

a single-parameter process such as a spatial process u(x,θ) the covariance between two
spatial locations x1 and x2 is defined as

Cov(u(x1,θ),u(x2,θ))

=E{(u(x1,θ)−ū(x1))(u(x2,θ)−ū(x2))}, (1.2)

with ū∈R denoting the mean of the process. A few largest eigenvalues and correspond-
ing eigenvectors of this (Ns×Ns) symmetric positive-semidefinite covariance matrix hold
a significant amount of information about the process u(x,θ). These eigenvectors serve as
the set of bases in an approximate representation of this process, known as the Karhunen-
Loève (KL) decomposition [1–5]. Similarly, the covariance matrix for a spatio-temporal
process can be constructed with the elements as Cov(u(xi,tk,θ),u(xj,tl ,θ)), i, j=1,2,··· ,Ns


