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A FINITE ELEMENT METHOD FOR ELASTICITY INTERFACE

PROBLEMS WITH LOCALLY MODIFIED TRIANGULATIONS

HUI XIE, ZHILIN LI, AND ZHONGHUA QIAO

Abstract. A finite element method for elasticity systems with discontinuities

in the coefficients and the flux across an arbitrary interface is proposed in this

paper. The method is based on a Cartesian mesh with local modifications

to the mesh. The total degrees of the freedom of the finite element method

remains the same as that of the Cartesian mesh. The local modifications lead

to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The

standard finite element theory and implementation are applicable. Numerical

examples that involve discontinuous material coefficients and non-homogeneous

jump in the flux across the interface demonstrate the efficiency of the proposed

method.
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1. Introduction

In this paper, we propose a finite element method for plane elasticity problems
with interfaces in which the physical parameters and solutions may be discontinuous
across an arbitrary interface. Elasticity interface problems have wide applications
in continuum mechanics, particularly for problems that involve stresses and strains,
see for example, [4, 13, 20].

We first introduce the problem of our interest. Let x = (x, y) be a point in space
and u = (u1(x, y), u2(x, y)) be the displacement of a plate which is composed of
different materials. The relation between strains and displacements of the plate is
given by

(1) ε11 =
∂u1

∂x
, ε22 =

∂u2

∂y
, ε12 = ε21 =

1

2

(

∂u1

∂y
+

∂u2

∂x

)

.

Assuming that the material is linearly elastic and isotropic; and that the displace-
ments are small, we have the following relation between stresses and strains, or the
constitutive relation from the Hooke’s law,

(2) σij = λ (∇ · u) δij + 2µεij(u), i, j = 1, 2,
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where λ and µ are the Lamé coefficients, and

δij =

{

1, i = j,
0, i 6= j,

∇ · u =
∂u1

∂x
+

∂u2

∂y
.

Let σ = (σij) be the stress tensor, f(x) = (f1, f2) be the applied body forces,
then the stress tensor satisfies the following partial differential equations,

(3) −∇ · σ = f ,

i.e.,

(4)















−
∂σ11

∂x
−

∂σ12

∂y
= f1,

−
∂σ21

∂x
−

∂σ22

∂y
= f2.

From (2)-(4), we can re-write the above system as the system of plane elasticity
equations of the following,

(5)

−

{

(λ+ 2µ)
∂2u1

∂x2
+ (λ + µ)

∂2u2

∂x∂y
+ µ

∂2u1

∂y2

}

= f1,

−

{

(λ+ 2µ)
∂2u2

∂y2
+ (λ + µ)

∂2u1

∂x∂y
+ µ

∂2u2

∂x2

}

= f2.

In the vector form, it is

(6) −µ△u− (λ+ µ)∇ ∇ · u = f .

Note that, in practice, it is common to use the Young’s modulus E and Poisson’s
ratio ν instead of the Lamé coefficients λ and µ in the expression (2). The relations
between λ and µ, and E and ν, are given by

µ =
E

2(1 + ν)
,(7)

λ =
νE

(1 + ν)(1 − 2ν)
(plane strain), λ =

νE

1− ν2
(plane stress).(8)

We want to obtain the numerical solution of the elasticity system that has an
interface Γ in the solution domain. Across the interface Γ, the material coefficients
may have finite jumps; so does the flux σn, see Fig. 1 for an illustration. Now the
problem can be written as follows:

−∇ · σ = f in Ω+ ∪ Ω−(9)

[u]Γ = 0,(10)

[σn]Γ = q,(11)

u|∂Ω = u0,(12)

where f = (f1, f2), q = (q1, q2), u0 = (u01 , u02) are known vector functions, and
Γ ∈ C2 is a closed interface between the subdomains Ω+ and Ω−. The jump [ · ]Γ is
defined as the difference of the limiting values from the outside of the interface to
the inside, and n is the unit normal direction of the interface Γ pointing outward.
We refer the reader to [15, 16] for more information of the elasticity problems.

It is always challenging to solve the interface problems. Several different ap-
proaches have been developed based on different formulations. A common and
simple approach is to use a body-fitted mesh and a finite element method. This


