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EFFICIENT HOMOTOPY SOLUTION AND A CONVEX

COMBINATION OF ROF AND LLT MODELS FOR IMAGE

RESTORATION

FENLIN YANG, KE CHEN, AND BO YU

Abstract. The Rudin, Osher, and Fatemi model [20] (ROF) for image restoration has been

extensively studied due to its edge preserving capability, but for images without edges (jumps),

the solution to this model has the undesirable staircasing effect. To improve the model, Lysaker,

Lundervold and Tai [14] (LLT) proposed a better second-order functional suitable for restoring

smooth images but it is difficult to preserve discontinuities for non-smooth images. It turns out

that results from convex combinations of ROF model and LLT model can preserve the main

advantages of both models (see [16, 9]). In this paper, we first propose an applicable homotopy

algorithm based fixed point method for the LLT model. We then propose two new variants of

convex combination models. Numerical experiments are shown to demonstrate the advantages of

these combination models and the robustness of our homotopy algorithm.

Key words. Image restoration, total variation, fourth-order PDE, fixed point method, homotopy
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1. Introduction

An observed image f can often become blurry and noisy during the formation,

transmission or recording process for the original image u. The common additive

degradation model is

f = Ku+ η,(1)

where η is an additive noise term and K is a known linear operator representing the

blur (usually a convolution), the image is only corrupted by noise when K is the

identity. The recovery of the original image from the observed image is an essential

pre-processing phase for further image processing tasks such as edge detection,

pattern recognition, and object tracking, etc.

The usual approach for image restoration solves the following constrained opti-

mization problem:

min
u

R(u) subject to ‖Ku− f‖2 = σ2.(2)

This problem is naturally linked to the following unconstrained problem – the

minimization of the total variation penalized least squares functional (see [20, 4,

24]):

min
u

{

J(u) = αR(u) +
1

2
‖Ku− f‖2

}

.(3)

Here ‖·‖ is the norm in L
2(Ω) and α is a positive parameter controlling the trade-off

between goodness of fit-to-the-data and variability in u. R(u) is some functional

which controls the regularity of u and ensures the solvability of the inverse problem
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(1). Examples of regularization functionals that can be found in the literature

[24, 26, 7, 2] include R(u) = ‖u‖, ‖△u‖, ‖∇u‖.
The total variation semi-norm proposed by Rudin, Osher, and Fatemi [20] (ROF)

is one of the most effective regularization functionals for R(u) which does not pe-

nalize discontinuities in u, and thus allows us to recover the edges of the original

image. Its formula is

R1(u) = TV (u) =

∫

Ω

|∇u|dxdy =

∫

Ω

√

u2
x + u2

ydxdy.

The corresponding Euler-Lagrange equation for (3) is

g1(u) = −α∇ ·
(

∇u
√

|∇u|2 + β

)

+K∗(Ku− f) = 0,(4)

with homogeneous Neumann boundary condition ∂u
∂~n

= 0, and ~n is the normal

vector. Here β is a small positive parameter to avoid the denominator equals to

zero. There are many fast methods for (4) (see [20, 22, 6, 17, 5, 8, 18]) up to now.

Although the ROF model yields very satisfactory results for removing noise while

preserving edges, it suffers from the undesirable staircase effect for problems without

sharp edges, namely the transformation of smooth regions (ramps) into piecewise

constant regions (stairs). Some effort has been made to remedy this unfavorable

property [15, 17, 19, 2, 21, 7, 10].

In [14], Lysaker, Lundervold and Tai (LLT) proposed a second-order functional

as the regularization functional

R2(u) =

∫

Ω

|D2u|dxdy =

∫

Ω

√

u2
xx + u2

xy + u2
yx + u2

yydxdy.

The corresponding Euler-Lagrange equation for (3) using this R2(u) is

g2(u) = α

[

( uxx

|D2u|β

)

xx
+
( uxy

|D2u|β

)

yx
+
( uyx

|D2u|β

)

xy
+
( uyy

|D2u|β

)

yy

]

(5)

+K∗(Ku− f) = 0,

where β is a small positive parameter and |D2u|β =
√

u2
xx + u2

xy + u2
yx + u2

yy + β.

It is known that the LLT model can recover smooth surfaces. However, there exist

two major challenges in dealing with this model. One is to preserve jumps as done

by the ROF model and the other is to get a more efficient solution method for (5)

than the gradient descent.

To address the first challenge, one idea is to combine the models of ROF and

LLT because we desire restoration properties of both models. Therefore, Lysaker

and Tai [16] suggested a convex combination of the respective two solutions from

(4) and (5). Specifically, with w0 = f , a new iteration wk+1 is generated by the

convex combination

wk+1 = θkvk+1 + (1− θk)uk+1 k = 0, 1, 2 · · · ,(6)

where vk+1 and uk+1 are respectively obtained by the kth time marching iteration

of ROF model and LLT model with wk as their old iteration. Here the parameter

θk which is applied to control the combination depends on ∇wk as follows:

θk =

{

1, if |∇wk| ≥ c,

1
2 cos(

2π|∇wk|
c

) + 1
2 , elsewhere,

(7)


