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SOME MULTISCALE RESULTS USING LIMITED GLOBAL
INFORMATION FOR TWO-PHASE FLOW SIMULATIONS

LIJIAN JIANG, JORG E. AARNES, AND YALCHIN EFENDIEV

Abstract. In this paper, we present the analysis of recently introduced mul-
tiscale finite element methods that employ limited global information. In par-
ticular, these methods use single-phase flow information for the construction
of more accurate solution for two-phase immiscible flow dynamics in hetero-
geneous porous media. We consider the analysis of Galerkin multiscale finite
element method as well as mixed multiscale finite element method. Our anal-
ysis assumes that the fine-scale features of two-phase flow dynamics strongly
depend on single-phase flow. Under this assumption, we present the analysis
of multiscale finite element methods that use single-phase flow information.
Numerical results are presented which demonstrate that MsFEM using lim-
ited global information is more accurate and converges as the coarse mesh size

decreases.
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1. Introduction

Subsurface flows are often affected by heterogeneities in a wide range of length
scales. It is therefore difficult to resolve numerically all of the scales that impact
transport. Typically, upscaled or multiscale models are employed for such systems.
The main idea of upscaling techniques is to form coarse-scale equations with a pre-
scribed analytical form that may differ from the underlying fine-scale equations. In
multiscale methods, the fine-scale information is carried throughout the simulation
and the coarse-scale equations are generally not expressed analytically, but rather
formed and solved numerically.

Our purpose in this paper is to analyze multiscale finite element methods for two-
phase immiscible flows that employ single-phase flow information. A multiscale
finite element method was first introduced in [19] and takes its origin from the
pioneering work [9]. Its main idea is to incorporate the small-scale information
into finite element basis functions and capture their effect on the large scale via
finite element computations. The multiscale method in [19] shares some similarities
with a number of multiscale numerical methods, such as residual free bubbles [10,
26], variational multiscale method [20], two-scale finite element methods [25], two-
scale conservative subgrid approaches [4]. We remark that special basis functions
in finite element methods have been used earlier in [9, 7]. The multiscale finite
element methodology has been modified and successfully applied to two-phase flow
simulations in [21, 13, 1] and extended to nonlinear partial differential equations
18, 17).
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Recently, a number of upscaling and multiscale approaches that employ single-
phase flow information in upscaling two-phase flow problems have been introduced.
For example, in [12], the authors propose adaptive local-global technique that em-
ploys the solution of single-phase flow problem for computation of accurate up-
scaled properties. In [1] and later in [16], the single-phase flow solution is used
to construct multiscale basis functions for accurate simulations of two-phase flow
equations. The goal of this paper is to provide analysis of two multiscale finite ele-
ment methods that use single-phase flow information to construct basis functions.
These multiscale techniques have advantages if the fine-scale features of two-phase
flow dynamics strongly depend on single-phase flow. In particular, we assume that
two-phase flow pressure dynamics strongly depends on single-phase flow pressure.
This assumption is shown for channelized permeability in [16]. The convergence
rate of multiscale finite element method is obtained under this assumption. We
analyze both Galerkin multiscale finite element method as well as mixed multiscale
finite element method.

In the paper, we present numerical results which demonstrate that MsFEM using
limited global information is more accurate compared to MSFEM which only uses
local information to construct basis functions. Moreover, MsFEM with limited
global information converges as the coarse mesh size decreases. In our numerical
results, the permeability fields from SPE Comparative Solution Project [15] (also
known as SPE 10) is used. These permeability fields have channelized structure
and a large contrast. Because of channelized structure of the permeability fields,
the localized approaches do not perform well. Our numerical results show that one
can achieve high accuracy if MsFEM with limited global information is used.

The paper is organized as follows. In the next section, we present a brief dis-
cussion of two-phase flow and single-phase flow equations and a brief description of
main results. Section 3 is devoted to the analysis of Galerkin multiscale finite ele-
ment method. In Section 4, we present analysis for mixed multiscale finite element
method. In section 5, we present numerical results.

2. Motivation

In this section, we briefly present single-phase and two-phase flow equations
neglecting the effects of gravity, compressibility, capillary pressure and dispersion
on the fine scale. Porosity, defined as the volume fraction of the void space, will
be taken to be constant and therefore serves only to rescale time. The two phases
will be referred to as water and oil and designated by the subscripts w and o,
respectively. We can then write Darcy’s law, with all quantities dimensionless, for
each phase j as follows:

(1) vj ==X\ (S)kVp,

where v; is phase velocity (j = w,0), S is water saturation (volume fraction), p
is pressure, A\; = k,;(S)/p; is phase mobility, where k,; and u; are the relative
permeability and viscosity of phase j respectively, and k is the permeability tensor,
which is here taken to be diagonal.

Combining Darcy’s law with conservation of mass, div(v,, + v,)=0, allows us to
write the flow equation in the following form

(2) div(A(S)kVp) = f,

where the total mobility A(S) is given by A(S) = A (S) + Ao(S) and f is the source
term which represents wells. The saturation dynamics affects the flow equations.



