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Abstract. This study was suggested by previous work on the simulation of evolution
equations with scale-dependent processes, e.g., wave-propagation or heat-transfer, that
are modeled by wave equations or heat equations. Here, we study both parabolic and
hyperbolic equations. We focus on ADI (alternating direction implicit) methods and
LOD (locally one-dimensional) methods, which are standard splitting methods of lower
order, e.g. second-order. Our aim is to develop higher-order ADI methods, which are
performed by Richardson extrapolation, Crank-Nicolson methods and higher-order LOD
methods, based on locally higher-order methods. We discuss the new theoretical results
of the stability and consistency of the ADI methods. The main idea is to apply a higher-
order time discretization and combine it with the ADI methods. We also discuss the dis-
cretization and splitting methods for first-order and second-order evolution equations.
The stability analysis is given for the ADI method for first-order time derivatives and
for the LOD (locally one-dimensional) methods for second-order time derivatives. The
higher-order methods are unconditionally stable. Some numerical experiments verify
our results.
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1. Introduction

Using the classical operator-splitting methods, e.g., the Strang-Marchuk splitting
method, we decouple the differential equation into more basic equations, so that each
equation becomes simpler or contains only one operator, see [22, 23, 28]. These methods
are often not sufficiently stable and also neglect the physical correlations between the op-
erators, see [3]. The present work develops new efficient higher-order methods based on
a stable variant of ADI or LOD methods, see [17, 20]. The decomposition ideas in expo-
nential operators, see [3], which deal with the Sheng-Suzuki theorem, are based on the
operator structure and conserve the physical characteristics. We contribute a further idea
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that uses stable and conserved lower-order methods, improves them with extrapolation
methods and derive new higher-order results. The standard second-order method conse-
quently applies Richardson extrapolation to obtain fourth-order and higher-order results.
The physical decoupling in new operators and the deriving of new, strong directions are
presented in the applications, see [3,16], and can be included in our theory. We consider a
more abstract decomposition method, that is motivated by spatial and temporal directions.
The theoretical results are obtained by application of the Neumann linear stability anal-
ysis, see [18]. For the LOD method we apply weak formulations for the stability results,
see [20]. At the least we obtain higher-order methods in time and space and derive new
stability results. We compared our results to methods discussed in [29], which dealt with
global extrapolation of the parallel splitting method and obtained at least second and third
order. Such methods are simple to implement but are not proposed to fourth order meth-
ods. We can also take into account the higher-order discretization in time and space. Our
extrapolation methods are applied to lower-order ADI and LOD methods and can balance
the underlying higher-order space and time discretizations. Therefore we can expand our
splitting method to fourth-order methods in time and space. Moreover, our methods can be
used for heat as well as wave equations. The theoretical results are verified by numerical
experiments and examine the stability and consistency of the proposed methods.

The paper is organized as follows. A mathematical model and the underlying dis-
cretization methods for the heat and wave equation are introduced in Section 2. The
splitting method for the evolution equations is given in Section 3. The stability analysis of
the higher-order splitting method is given in Section 3.4. We discuss the numerical results
in Section 4. Finally, we consider future works in the area of splitting and decomposition
methods.

2. Mathematical model and discretization

The study presented below was suggested by various real-life problems whose govern-
ing equations are of evolution type. The first group presents the discussion of heat-transfer
problems, see, e.g., [13], which are modeled by parabolic equations. The second group
presents computational simulation of earthquakes, see, e.g., [4] and the examination of
seismic waves, see [1,2]. Their underlying equations are hyperbolic differential equations.

2.1. Heat equation

Further, we have the heat equation, see [13], for which the mathematical equations
are given by

∂t u = D1(x , y) ∂x x u + D2(x , y) ∂y y u + D3(x , y) ∂zz u, in Ω× [0, T], (2.1)

u(x , y, 0) = u0(x , y), on Ω, (2.2)

The unknown function u = u(x , t) is considered to be in Ω× (0, T ) ⊂ IRd × IR where the
spatial dimension is given by d . The function D(x , y) = (D1(x , y), D2(x , y), D3(x , y))t ∈


