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Abstract. Many problems with underlying variational structure involve a coupling of
volume with surface effects. A straight-forward approach in a finite element discretiza-
tion is to make use of the surface triangulation that is naturally induced by the volume
triangulation. In an adaptive method one wants to facilitate “matching” local mesh
modifications, i.e., local refinement and/or coarsening, of volume and surface mesh
with standard tools such that the surface grid is always induced by the volume grid.
We describe the concepts behind this approach for bisectional refinement and describe
new tools incorporated in the finite element toolbox ALBERTA. We also present several
important applications of the mesh coupling.
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1. Introduction

A great variety of problems in science and engineering are modeled mathematically
by means of a system of partial differential equations (PDEs) closed with suitable initial,
boundary, or interface conditions. The PDEs are defined on a domain in space or space-time
and in many applications the shape of the domain may also be unknown beforehand, and
must be determined as part of the solution. In addition, the problems under consideration
involve a coupling of surface and bulk effects. The mathematical description may reflect
this in that the PDEs contain some unknowns defined on a spacial domain Ω as well as
other unknowns defined on a lower-dimensional manifold Γ ⊂ Ω̄, for instance the domain
boundary ∂Ω. In Section 2 we give several examples of such problems.

These problems may be numerically solved using various discretization schemes and
techniques. In this paper we will focus on finite element discretizations. Most finite el-
ement methods for time-dependent problems do not mesh the space-time domain, but
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employ a suitable time discretization for converting the time-dependent problem into a
sequence of stationary problems. This allows us to restrict ourselves to spacial domains.
Furthermore, we only consider simplicial grids but the derived methods directly carry over
to other types of meshes.

During the last decades, adaptive finite elements have become a well-established tool
for the numerical solution of boundary value problems, see the monographs [1, 5, 59]
and the references therein. Adaptivity is designed to use computational resources more
efficiently. In higher space dimensions some problems may only be solvable in reasonable
time using adaptive methods. Adaptive finite element methods employ an iteration of the
form SOLVE → ESTIMATE → MARK → REFINE/COARSEN
for adapting the finite element mesh to the solution of the underlying problem. Given a
grid, procedure SOLVE computes the discrete solution and ESTIMATE computes an a pos-
teriori error estimate, which is an upper bound for the error in some given norm in terms of
the discrete solution and data of the PDE. Usually, the estimator is built from element error
indicators, which are used in MARK for selecting elements subject to refinement and/or
coarsening. In the last step, refinement and/or coarsening algorithms locally refine and/or
coarsen the grid based on the decisions taken in MARK, see for instance [49] for a more
detailed description. For elliptic problems the above adaptive loop is well analyzed with
respect to convergence [20,41,42] and optimal cardinality [9,14,53].

The finite element discretization of problems involving bulk and surface effects is done
by triangulating Ω as well as Γ and defining finite element spaces on both triangulations.
The different spaces are then used for approximating bulk quantities respectively surface
quantities. The surface triangulation is naturally defined by collecting the faces of elements
of the bulk triangulation that lie on Γ, i.e., the surface grid is the trace of the volume grid.
Since bulk and surface effects interact, we need restrictions of bulk quantities to the sur-
face, naturally introducing the concept of trace spaces. Some applications may also require
prolongations of surface quantities to the bulk. For standard Lagrange finite element dis-
cretizations both tasks are facilitated by an injective mapping connecting surface degrees
of freedom (DOFs) with bulk degrees of freedom. Such a mapping in combination with
corresponding finite element bases for bulk and surface then exactly realizes the finite
element space on Γ as the trace space of the bulk space defined over Ω.

Coupled meshes are easily handled if the meshes do not change during a computation.
In the setting of adaptive methods the problems of coupling grids become inherently more
complex. If an adaptive method requires a change of any of the involved meshes, we might
lose the useful property that the surface grids were originally defined as the collection of
bulk faces. Without this property the transfer of data between bulk and surface meshes
becomes much more difficult. In this scenario, after each mesh change one would have
to somehow reconstruct the connection of bulk elements with surface elements, a cumber-
some, possibly costly process. The aforementioned mapping of DOFs would no longer exist
and would have to established from scratch.

It is thus highly desirable that the coupling is maintained automatically during local
mesh modifications, i.e., refinement and coarsening of relatively small patches of elements.


