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Abstract. We prove convergence for a meshfree first-order system least squares (FOSLS)

partition of unity finite element method (PUFEM). Essentially, by virtue of the partition

of unity, local approximation gives rise to global approximation in H(div) ∩ H(curl).

The FOSLS formulation yields local a posteriori error estimates to guide the judicious

allotment of new degrees of freedom to enrich the initial point set in a meshfree dis-

cretization. Preliminary numerical results are provided and remaining challenges are

discussed.
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1. Introduction

1.1. Summary

Interest remains in avoiding the proper tessellation of a computational domain used

to solve partial differential equations, especially in the context of moving meshfree, or

meshless, particle methods. However, as will be made clear, the flexibility inherent to

using merely the cover of a domain does not come without cost. A number of mostly-

related meshfree approaches have been proposed, yielding a variety of approximation

spaces from which to choose. For example, consider the diffuse element method (DEM),

element free Galerkin (EFG), finite point method (FPM), HP clouds, meshfree local Petrov

Galerkin (MLPG), smooth particle hydrodynamics (SPH), moving least squares SPH (ML-

SPH), material-point method (MPM), partition of unity finite element method (PUFEM),

reproducing kernel particle method (RKPM); see [1,2] for a classification and review. Be-

low, we employ the partition unity (PU) approach, given its flexibility and local nature, to

discretize the prototypical first-order system least-squares (FOSLS) formulation for Pois-

son’s equation. This synthesis can be generalized to existing FOSLS formulations of more
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complicated PDE systems. Since the FOSLS formulation presents local a posteriori error

estimates to guide adaptive enrichment of an initially-sparse point set, the synthesis may

enhance the utility of meshfree methods.

Below, after a brief discussion about meshfree methods, we introduce FOSLS and a

vector PUFEM discretization. Then, convergence is proved from assumptions about the lo-

cal approximation spaces defined on each patch used to cover the domain. Finally, several

numerical examples are provided.

1.2. Meshfreedom

The notion of altogether avoiding a mesh requires some clarification. First, a set of

points in a domain, along with an associated covering of the domain, must be chosen.

Given generic specifications for this covering, such as the density used in point set selec-

tion and the degree of overlap, a provision of points and their associated patches can be

supplied probabilistically, without use of a background mesh [3]. However, enrichment

of an initially sparse (or coarse) point set nevertheless entails relaxation of the new point

set, in concert with updating the associated cover. While explicit retriangulation is thus

avoided, significant refinement costs persist to ensure that both point placement and patch

size are suitable.

Integration during assembly of the discrete problem leads to a second unavoidable com-

putational cost. In lieu of a tessellation, integration over each intersecting pair of patches

entails defining quadrature points either locally, in a consistent and efficient manner, or

globally, appealing to some background mesh. Below we simply use circular patches Ωi to

cover a domain Ω ⊂ R2. Rather than perform quadrature on each individual lens, Ωi ∩Ω j,

which would yield a symmetric linear system, it is more efficient to simply set a quadrature

rule on each Ωi. Of course, this leads to an asymmetric system due to inexact integration,

i.e., Ai j is computed using quadrature on Ωi while A j i is computed using quadrature on Ω j.

Our approach is truly meshfree in the sense that integration is performed according

to neighbor connectivity, point locations, and neighboring support radii, not according to

the elements of a tessellation. No background mesh is utilized. As a result, adding and/or

moving individual points is unencumbered by the need to re-tessellate the domain. This

flexibility comes with less-efficient assembly of the discrete problem, primarily because

there are many more regions of overlap, Ωi ∩Ω j, than there are elements of a comparable

tessellation. This cost is compounded by the partition of unity construction, which yields

conforming discretizations at the expense of pointwise conditions on the degree of overlap;

e.g., requiring that each point be covered by at least three elements of the cover, #{ j|Ωi ∩
Ω j 6= ;} approaches 30 in Fig. 1.

2. A FOSLS partition of unity method

FOSLS has been applied to far more difficult PDE systems than the simplistic elliptic

problem considered below [4]. As a methodology, it is only distinct from least-squares

(LS) in that a residual on vorticity, or the curl of velocity, is introduced in lieu of solving for


