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Abstract. In this paper, a class of new immersed interface finite element methods

(IIFEM) is developed to solve elasticity interface problems with homogeneous and non-

homogeneous jump conditions in two dimensions. Simple non-body-fitted meshes are

used. For homogeneous jump conditions, both non-conforming and conforming ba-

sis functions are constructed in such a way that they satisfy the natural jump condi-

tions. For non-homogeneous jump conditions, a pair of functions that satisfy the same

non-homogeneous jump conditions are constructed using a level-set representation of

the interface. With such a pair of functions, the discontinuities across the interface

in the solution and flux are removed; and an equivalent elasticity interface problem

with homogeneous jump conditions is formulated. Numerical examples are presented

to demonstrate that such methods have second order convergence.
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1. Introduction

In this paper, we consider the elasticity interface problem

∇ ·σ+ F = 0, in Ω− ∪Ω+, (1.1)

where σ is the stress tensor, a 2 × 2 symmetric matrix, F = ( f1, f2)
T is a known body

force. The domain Ω consists of Ω− and Ω+, Ω−∩Ω+ = ;, see Fig. 1 for an illustration. We

assume that the interface Γ = Ω− ∩Ω+ separates Ω− and Ω+ is smooth enough (C2). We

also denote by n the unit vector normal to Γ pointing from Ω− to Ω+.
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Figure 1: A diagram of the geometry of an ellipti interfae problem.
For linearly elastic problems with small displacements, the relation between stress ten-

sor and deformation is given by

σi j = λ (∇ · u)δi j + 2µǫi j(u), (1.2)

where λ and µ are Lamé constants, u= (u1, u2)
T is the displacement vector. The equations

(1.1) can be written as the component form,
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Due to the discontinuities in the coefficients, or/and source distribution along the interface

Γ, the solution and flux are often discontinuous. The jump conditions across Γ can be

written as
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The jump conditions are called natural if

w1 = w2 = q1 = q2 = 0.


