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Abstract. In this paper we study a class of multilevel high order time discretization

procedures for the finite difference weighted essential non-oscillatory (WENO) schemes

to solve the one-dimensional and two-dimensional shallow water equations with source

terms. Multilevel time discretization methods can make full use of computed informa-

tion by WENO spatial discretization and save CPU cost by holding the former computa-

tional values. Extensive simulations are performed, which indicate that, the finite dif-

ference WENO schemes with multilevel time discretization can achieve higher accuracy,

and are more cost effective than WENO scheme with Runge-Kutta time discretization,

while still maintaining nonoscillatory properties.
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1. Introduction

In this paper, the finite difference weighted essential non-oscillatory (WENO) schemes

with linear multilevel time discretizations are used to simulate discontinuous flows of the

shallow water equations with source terms. The numerical solutions are compared with

those of WENO schemes with Runge-Kutta time discretizations. We will be mainly address-

ing on cost CPU time and resolution.

WENO schemes were firstly developed from essential non-oscillatory (ENO) scheme,

which share many advantages with and usually perform better than TVD or TVB schemes,
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because they use an adaptive stencil trying to obtain information from the smoothest re-

gions. ENO schemes started with the classic paper of Harten, et al, in 1987 [8,9]. WENO

schemes use a convex combination of all candidate stencils instead of the one used as in

the original ENO. The first WENO scheme was constructed in 1994 by Liu et al. [13] for the

third order finite volume version in one space dimension. Then the third and the fifth order

finite difference WENO schemes in multi-space dimensions were constructed. With a gen-

eral framework for the design of smoothness indicators and nonlinear weights [11], higher

order WENO finite difference schemes up to the eleventh order were designed in [3], very

high order WENO schemes up to the seventeenth order were developed in [7], and WENO

schemes were generalized to triangle meshes [10]. WENO improves upon ENO in robust-

ness, better smoothness of fluxes, better steady convergence, better provable convergence

properties, and more efficiency [17].

WENO is a procedure of spatial discretization; namely, it is a procedure to approximate

the spatial derivative terms. It forms a very important class of high accuracy numerical

methods [11,13], leading to a class of high order finite difference or finite volume methods

for hyperbolic conservation laws [2, 20]. They give sharp, non-oscillatory discontinuity

transitions and at the same time provide high order accurate resolutions for the smooth

part of the solution [4,21].

For time-dependent problems, we need accuracy of time discretization as well. There

are mainly two different approaches to approximate the time derivative [14, 18]. One

way is via the classical Lax-Wendroff procedure, which relies on converting all the time

derivatives in a temporal Taylor expansion into spatial derivatives, then discretizing the

spatial derivatives, so it is also called the Taylor type. The approach can produce the

same high order accuracy with a smaller effective stencil. The other way is to use a high

order ODE solver, such as Runge-Kutta method or multilevel type. The approach has the

advantages of simplicity in concept and in coding and they are easily generalizable to

multidimensional problems. Runge-Kutta method is commonly used, but the method costs

more CPU time, as for every time step it must iterate k times for the k-th order Runge-Kutta

method. Multilevel time discretization methods can make full use of given information

with spatial discretization. Stencils of multilevel time discretization are more compact

than that of Runge-Kutta methods, since we communicate only with immediate neighbors

of cell i to computed un+1
i

from un
i
, and the CFL number of multilevel method is smaller

than that of Runge-Kutta method, while they need the same memory of the cells. Linear

multilevel methods are the most commonly used in multilevel procedures.

In this paper, the fifth order WENO finite difference schemes with multilevel type time

discretization are used to solve the one-dimensional and two-dimensional shallow water

equations. We follow the ideas of Jiang and Shu about the WENO schemes [11], Rogers et

al. [16] and Xing and Shu [19] about the balance of the flux and the source terms of shal-

low water equations, and linear multilevel time discretization. This paper is organized as

follows. In Section 2, we describe the discretization and numerical method of the shallow

water equations. Numerical examples are given to demonstrate the advantages of main-

taining high order accuracy, the resolution and cost effective of the constructed schemes in

Section 3. Concluding remarks are included in Section 4.


