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Abstract. A class of numerical methods is developed for second order Volterra integro-

differential equations by using a Legendre spectral approach. We provide a rigorous

error analysis for the proposed methods, which shows that the numerical errors decay

exponentially in the L∞-norm and L2-norm. Numerical examples illustrate the conver-

gence and effectiveness of the numerical methods.
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1. Introduction

Second order Volterra integro-differential equations (VIDEs) arise in the mathematical

model of physical and biological phenomena. This fact has led researchers to develop the

theoretical and numerical analysis for such equations. For a survey of early results we

refer the reader to [12, 19–21, 25]. More recently, polynomial spline collocation methods

were investigated in [9, 23]. Bologna [22] found an asymptotic solution for first and

second order VIDEs containing an arbitrary kernel. In [24], Sinc-collocation method was

developed to approximate the second order VIDEs with boundary conditions.

So far, very few works have touched the spectral approximations to second order

VIDEs. Spectral methods have been used in applied mathematics and scientific comput-

ing to numerically solve certain partial differential equations (PDEs) [2, 7, 10, 17]. In

practice, spectral methods have excellent convergence properties with the so-called “expo-

nential convergence” being the fastest possible. Recently, several authors have developed
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the spectral methods for the solutions of Volterra integral equations (VIEs) of the sec-

ond kind [27,29,30], pantograph-type delay differential equations [15,16] and singularly

perturbed problems [28]. The main purpose of this work is to apply the Legendre spectral-

collocation methods for second order VIDEs. We will provide a rigorous error analysis

which theoretically justifies the spectral rate of convergence.

For simplicity, denote y( j)(t) =
�

∂ j/∂ t j
�

y(t), j = 0,1,2. In order to discuss the

numerical solution of the second order VIDEs we consider the following linear integro-

differential equation:

y(2)(t) = q(t) +

1∑

j=0

p j(t)y
( j)(t) +

1∑

j=0

∫ t

0

K j(t, s)y
( j)(s)ds, t ∈ Ĩ := [0, T], (1.1)

with

y(0) = y0, y(1)(0) = y1, (1.2)

where q : Ĩ → R, p j : Ĩ → R and K j : D → R ( j = 0,1) (with D := {(t, s) : 0 ≤ s ≤
t ≤ T}) are given functions and are assumed to be sufficiently smooth in the respective

domains. The above equation is usually known as basic test equation and is suggested by

Brunner and Lambert [14]. It has been widely used for analyzing the solution and stability

properties of various methods.

For ease of analysis, we will describe the spectral methods on the standard interval

Î := [−1,1]. Hence, we employ the transformation

t =
T

2
(1+ x), x =

2

T
t − 1.

Then the above problem becomes

u(2)(x) =

�
T

2

�2 1∑

j=0

∫ T

2
(1+x)

0

K j

�
T

2
(1+ x), s

�

y( j)(s)ds

+ b(x)+

1∑

j=0

a j(x)u
( j)(x), x ∈ Î := [−1,1], (1.3)

with

u(−1) = u−1, u(1)(−1) = u′−1, (1.4)

where

u(x) = y

�
T

2
(1+ x)

�

, b(x) =

�
T

2

�2

q

�
T

2
(1+ x)

�

,

a0(x) =

�
T

2

�2

p0

�
T

2
(1+ x)

�

, a1(x) =
T

2
p1

�
T

2
(1+ x)

�

,

u−1 = y0, u′−1 =
T

2
y1.


