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Abstract. With the aid of index functions, we re-derive the ML(n)BiCGStab algorithm
in [Yeung and Chan, SIAM J. Sci. Comput., 21 (1999), pp. 1263-1290] systematically.
There are n ways to define the ML(n)BiCGStab residual vector. Each definition leads
to a different ML(n)BiCGStab algorithm. We demonstrate this by presenting a second
algorithm which requires less storage. In theory, this second algorithm serves as a
bridge that connects the Lanczos-based BiCGStab and the Arnoldi-based FOM while
ML(n)BiCG is a bridge connecting BiCG and FOM. We also analyze the breakdown
situation from the probabilistic point of view and summarize some useful properties of
ML(n)BiCGStab. Implementation issues are also addressed.
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1. Introduction

Consider the solution of the linear system

Ax = b, (1.1)

where A ∈ CN×N and b ∈ CN . If we express the BiCG [4, 15] residual as rBiCG
k

= pk(A)r0

in terms of a polynomial pk(λ) of degree k and the initial residual r0, the residual vector
rk of a Lanczos-type product method† based on BiCG is defined to be rk = φk(A)pk(A)r0,
where φk(λ) is some polynomial of degree k with φk(0) = 1. In CGS [28], φk = pk. Since,
in every iteration, CGS searches for an approximate solution in a larger Krylov subspace, it
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often converges much faster than BiCG. However, CGS usually behaves irregularly due to
a lack of a smoothing mechanism. In BiCGStab [31], the φk is

φk(λ) =

¨
1 if k = 0,
(1−ωkλ)φk−1(λ) if k > 0.

(1.2)

Here ωk is a free parameter selected to minimize the 2-norm of rBiCGStab
k

in the kth iter-
ation. As a result, BiCGStab is generally more stable and robust than CGS. BiCGStab has
been extended to BiCGStab2 [7] and BiCGStab(l) [23,27] through the use of minimizing
polynomials of higher degree. In BiCGStab2, the φk is defined by the recursion

φk(λ) =





1 if k = 0,
(1−ωkλ)φk−1(λ) if k is odd,
((αkλ+ βk)(1−ωk−1λ) + 1− βk)φk−2(λ) if k is even.

The parameters are again chosen to minimize BiCGStab2 residuals. Likewise, BiCGStab(l)
defines its φk as

φk(λ) =

¨
1 if k = 0,

(1+
∑l

j=1α jλ
j)φk−l(λ) if k is a multiple of l,

where the parameters in the factor 1+
∑l

j=1 α jλ
j yields an l-dimensional minimization in

every lth step. BiCGStab2 and BiCGStab(l) usually converge faster than BiCGStab because
of smaller residuals in magnitude while avoiding near-breakdowns caused by a possibly
too small ωk. CGS, BiCGStab and BiCGStab2 have been summarized and generalized by
GPBi-CG [40] where φk is

φk(λ) =





1 if k = 0,
1−ω1λ if k = 1,
(1+ βk−ωkλ)φk−1(λ)− βkφk−2(λ) if k > 1.

GPBi-CG will become CGS, BiCGStab or BiCGStab2 when the α,β ,ω are appropriately
chosen. For detailed descriptions of these and other product-type methods, one is referred
to [6,8,20,22,32] and the references therein. Moreover, a history of product-type methods
can be found in [10]. The history starts three decades ago with IDR [36] method which
can be considered as the predecessor of CGS and BiCGStab [24]. Recently, IDR has been
generalized to IDR(s) with a shadow space of higher dimension, see [24, 30, 34]. IDR(s)
has close relations with ML(s)BiCGStab.

Generalizations of BiCGStab to methods based on the generalizations of BiCG have
been made. For example, BL-BiCGStab [3] is a BiCGStab variant built on the BL-BiCG [16]
for the solution of systems with multiple right-hand sides. ML(n)BiCGStab [39] is another
BiCGStab variant built on ML(n)BiCG, a BiCG-like method derived from a variant of the
band Lanczos process described in [1]with n left-starting vectors and a single right-starting
vector.


