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Abstract. We prove the quasi-optimal convergence of a standard adaptive finite ele-
ment method (AFEM) for a class of nonlinear elliptic second-order equations of mono-
tone type. The adaptive algorithm is based on residual-type a posteriori error estimators
and Dörfler’s strategy is assumed for marking. We first prove a contraction property for
a suitable definition of total error, analogous to the one used by Diening and Kreuzer
(2008) and equivalent to the total error defined by Cascón et. al. (2008). This con-
traction implies linear convergence of the discrete solutions to the exact solution in
the usual H1 Sobolev norm. Secondly, we use this contraction to derive the optimal
complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and
extend the theory from Cascón et. al. to a class of nonlinear problems which stem from
strongly monotone and Lipschitz operators.
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1. Introduction

The main goal of this article is the study of convergence and optimality properties
of an adaptive finite element method (AFEM) for quasi-linear elliptic partial differential
equations over a polygonal/polyhedral domain Ω ⊂ Rd (d = 2,3) having the form

¨

Au := −∇ ·
�

α( · , |∇u|2)∇u
�

= f inΩ

u = 0 on∂Ω,
(1.1)
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where α : Ω× R+ → R+ is a bounded positive function whose precise properties will be
stated in Section 2 below, and f ∈ L2(Ω) is given. The assumptions on α guarantee that
the nonlinear operator A is Lipschitz and strongly monotone; see (2.6)–(2.7). This kind of
problems arises in many practical situations; see Section 2.2 below.

AFEMs are an effective tool for making an efficient use of the computational resources,
and for certain problems, it is even indispensable to their numerical resolvability. The
ultimate goal of AFEMs is to equidistribute the error and the computational effort obtaining
a sequence of meshes with optimal complexity. Adaptive methods are based on a posteriori
error estimators, that are computable quantities depending on the discrete solution and
data, and indicate a distribution of the error. A quite popular, natural adaptive version of
classical finite element methods consists of the loop

SOLVE → ESTIMATE → MARK → REFINE, (1.2)

that is: solve for the finite element solution on the current grid, compute the a posteriori
error estimator, mark with its help elements to be subdivided, and refine the current grid
into a new, finer one.

A general result of convergence for linear problems has been obtained by Morin, Siebert
and Veeser [16], where very general conditions on the linear problems and the adaptive
methods that guarantee convergence are stated. Following these ideas a (plain) conver-
gence result for elliptic eigenvalue problems has been proved in [8]. On the other hand,
optimality of adaptive methods using Dörfler’s marking strategy [7] for linear elliptic prob-
lems has been stated by Stevenson [22] and Cascón, Kreuzer, Nochetto and Siebert [2].
Linear convergence of an AFEM for elliptic eigenvalue problems has been proved in [13],
and optimality results can be found in [5,9]. For a summary of convergence and optimal-
ity results of AFEM we refer the reader to the survey [18] and the references therein. We
restrict ourselves to those references strictly related to our work.

Well-posedness and a priori finite element error estimates for problem (1.1) have been
stated in [4]. A posteriori error estimators for nonconforming approximations have been
developed in [19]. Linear convergence of an AFEM for the ϕ-Laplacian problem in a
context of Sobolev-Orlicz spaces has been established in [6]. Recently, the (plain) conver-
gence of an adaptive inexact FEM for problem (1.1) has been proved in [10], where only
a discrete linear system is solved before each adaptive refinement; albeit with stronger
assumptions on α.

In this article we consider a standard adaptive loop of the form (1.2) based on classi-
cal residual-type a posteriori error estimators, where the Galerkin discretization for prob-
lem (1.1) is considered. We use the Dörfler’s strategy for marking and assume a minimal
bisection refinement. The goal of this paper is to prove the optimal complexity of this
AFEM by stating two main results. The first one establishes the linear convergence of the
adaptive loop through a contraction property. More precisely, we will prove the following

Theorem 1.1 (Contraction property). Let u be the weak solution of problem (1.1) and let

{Uk}k∈N0
be the sequence of discrete solutions computed through the adaptive algorithm de-


