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Abstract. A mesh-independent, robust, and accurate multigrid scheme to solve a linear
state-constrained parabolic optimal control problem is presented. We first consider a
Lavrentiev regularization of the state-constrained optimization problem. Then, a multi-
grid scheme is designed for the numerical solution of the regularized optimality system.
Central to this scheme is the construction of an iterative pointwise smoother which
can be formulated as a local semismooth Newton iteration. Results of numerical ex-
periments and theoretical twogrid local Fourier analysis estimates demonstrate that the
proposed scheme is able to solve parabolic state-constrained optimality systems with
textbook multigrid efficiency.
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1. Introduction

Optimal control of parabolic systems occurs in many application fields such as chemi-
cal reaction simulations and biomedical sciences, among other important fields [3, 4, 20].
These problems require the development of algorithms that are fast and robust with respect
to the optimization parameters. Recent developments [1–3, 10] show that a successful
framework to develop such algorithms is represented by space-time collective-smoothing
multigrid schemes. In fact, Fourier analysis estimates [6, 10] and results of numerical
experiments with linear [1] and nonlinear [3, 4, 10] parabolic control problems demon-
strate that space-time multigrid schemes provide optimal control solutions with mesh-
independent convergence and robustness with respect to the value of the control parame-
ters.
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Previous contributions to the multigrid solution of parabolic control problems [1, 4, 6,
8, 12] have focused on first-order time discretization, while higher-order space-time dis-
cretization and constraints on the control have been considered in [10]. In this contribu-
tion, the authors found that the Crank-Nicolson scheme is not a convenient choice while
multistep backward differencing schemes are advantageous in the design of very efficient
pointwise and linewise smoothers.

In this paper, we contribute to the field of space-time multigrid methods for the case of
parabolic optimal control problems with state-constraints and second-order space-time dis-
cretization. Our multigrid approach is formulated based on criteria proposed in [1, 2, 10]
combining space-time collective smoothing multigrid schemes and Lavrentiev regulariza-
tion [21,25]. In this framework, the smoothing procedures are pointwise iterative schemes
that update the optimization variables collectively and use projection to satisfy the inequal-
ity constraints. We show that these iterative schemes can be interpreted as local semis-
mooth Newton methods [13,23,24] applied to the regularized state-constrained problems.

In the next section, we formulate a state-constrained linear parabolic optimal control
problem. Further, we obtain a Lavrentiev regularization of the problem and characterize
the optimal solutions as solutions of the corresponding regularized optimality system. In
Section 3, we discuss a space-time second-order discretization of the optimality system. In
Section 4, we illustrate the space-time multigrid framework and focus on the construction
of an efficient pointwise smoother. In Section 5, we investigate the proposed smoother
using results of twogrid local Fourier analysis to discuss the convergence properties of the
multigrid scheme with the pointwise smoother. We obtain smoothing-factor and multigrid
convergence-factor estimates that predict typical textbook multigrid efficiency and robust-
ness with respect to the values of the control parameters. Further, we present novel insight
that shows that the resulting smoothers can be interpreted as local semismooth Newton
schemes. In Section 6, detailed numerical experiments are carried out. The numerical re-
sults demonstrate the ability of the proposed multigrid framework to provide efficient so-
lutions to state constrained linear parabolic optimal control problems. Besides, we discuss
the application of the receding-horizon methodology [3,14] to achieve long-time tracking
of a desired trajectory with state constraints. A section of conclusion completes this work.

2. A state-constrained parabolic optimal control problem

Optimal control problems are defined for the purpose of determining the optimal way
to influence dynamical systems towards a given task. Our optimal control problem consists
of a parabolic governing system, a distributed control mechanism, and a criterion defining
the cost functional, that models the purpose of the control and describes the cost of its ac-
tion. The formulation of an optimal control problem is then to minimize the cost functional
under the constraint given by the modeling equations. The solution to this problem is char-
acterized by first-order optimality conditions given by the optimality system. In particular,
we focus on state-constrained parabolic optimal control problems where the configura-
tion of the controlled system is subject to functional constraints. For a more general and
detailed discussion on optimal control problems see, e.g., [17,25].


