Simple Fourth-Degree Cubature Formulae with Few Nodes over General Product Regions

Ran Yu^{1}, Zhaoliang Meng ${ }^{1, *}$ and Zhongxuan Luo ${ }^{1,2}$
${ }^{1}$ School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, P.R. China.
${ }^{2}$ School of Software, Dalian University of Technology, Dalian, 116620, P.R. China.

Received 15 October 2012; Accepted (in revised version) 23 September 2013
Available online 16 May 2014

Abstract

A simple method is proposed for constructing fourth-degree cubature formulae over general product regions with no symmetric assumptions. The cubature formulae that are constructed contain at most $n^{2}+7 n+3$ nodes and they are likely the first kind of fourth-degree cubature formulae with roughly n^{2} nodes for nonsymmetric integrations. Moreover, two special cases are given to reduce the number of nodes further. A theoretical upper bound for minimal number of cubature nodes is also obtained.

AMS subject classifications: 65D30, 65D32
Key words: Fourth-degree cubature formula, cubature formula, product region, non-symmetric region, numerical integration.

1. Introduction

We are interested in the integration

$$
\begin{equation*}
I(f)=\int_{\Omega} f(\boldsymbol{x}) \boldsymbol{\rho}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{1.1}
\end{equation*}
$$

over the product region

$$
\begin{equation*}
\Omega=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \tag{1.2}
\end{equation*}
$$

with the non-negative weight function $\rho(x)$ in the product form

$$
\begin{equation*}
\boldsymbol{\rho}(\boldsymbol{x})=\rho_{1}\left(x_{1}\right) \cdots \rho_{n}\left(x_{n}\right), \tag{1.3}
\end{equation*}
$$

[^0]where a_{i} and b_{i} are finite or infinite numbers. For a general smooth function $f(\boldsymbol{x})$, such an integration is often numerically approximated by the following weighted sum
\[

$$
\begin{equation*}
Q(f)=\sum_{j=1}^{N} w^{(j)} f\left(\boldsymbol{x}^{(j)}\right) \tag{1.4}
\end{equation*}
$$

\]

where $\boldsymbol{x}^{(j)}=\left(x_{1}^{(j)}, x_{2}^{(j)}, \cdots, x_{n}^{(j)}\right) \in \Omega \subset \mathbb{R}^{n}$ are N distinct cubature nodes for $j=$ $1,2, \cdots, N$, and $w^{(j)} \in \mathbb{R}$ are cubature weights. Denote by \mathcal{P}_{m}^{n} the space of the polynomials in n variables of degree no more than $m . Q(f)$ in (1.4) is said to be of degree m with respect to $I(f)$, if $Q(f)=I(f)$ for any $f \in \mathcal{P}_{m}^{n}$ and $Q(g) \neq I(g)$ for at least one $g \in \mathcal{P}_{m+1}^{n}$.

From the numerical points of view, people are interested in the cubature formula with a minimal number of nodes. Denote by $N_{\text {min }}^{G}(m, n)$ the minimal number of nodes of cubature formulae of degree m over general n-dimensional regions. Then one has the following general lower bound (see [3, Th. 9])

$$
\begin{equation*}
N_{\min }^{G}(m, n) \geq \operatorname{dim} \mathcal{P}_{[m / 2]}^{n}, \tag{1.5}
\end{equation*}
$$

where $[x]$ denotes the integer part of x. This lower bound is not very sharp for $n \geq 2$ and can be improved for odd degrees as follows:

$$
\begin{equation*}
N_{\min }^{G}(2 k+1, n) \geq \operatorname{dim} \mathcal{P}_{k}^{n}+\frac{\sigma_{l}}{l}, \tag{1.6}
\end{equation*}
$$

where, uniformly for any integer l satisfying $2 \leq l \leq n$, the constant

$$
\begin{aligned}
\sigma_{l}:= & \operatorname{dim}\left\{\left(f_{1}(\boldsymbol{x}), \cdots, f_{l}(\boldsymbol{x})\right) \in \mathcal{Z}_{k+1}^{l}: \sum_{i=1}^{l} x_{i} f_{i}(\boldsymbol{x}) \in \mathcal{P}_{k+1}^{n}\right\} \\
& -\operatorname{dim}\left\{\left(f_{1}(\boldsymbol{x}), \cdots, f_{l}(\boldsymbol{x})\right) \in \mathcal{Z}_{k+1}^{l}: \sum_{i=1}^{l} x_{i} f_{i}(\boldsymbol{x}) \in \mathcal{Z}_{k+1}\right\},
\end{aligned}
$$

and

$$
\mathcal{Z}_{k+1}:=\left\{f(\boldsymbol{x}) \in \mathcal{P}_{k+1}^{n}: g(\boldsymbol{x}) \in \mathcal{P}_{k}^{n} \Rightarrow I(f g)=0\right\}
$$

See [2, 6, 7]. For centrally symmetric regions, one can get a better lower bound

$$
N_{\min }^{C S}(2 k+1, n) \geq 2 \operatorname{dim} \mathcal{Q}_{k}^{n}- \begin{cases}1, & \text { if } k \text { is even and } 0 \text { is a node }, \tag{1.7}\\ 0, & \text { others },\end{cases}
$$

where $\mathcal{Q}_{2 k}^{n}$ is the subspace of $\mathcal{P}_{2 k+1}^{n}$ generated by even polynomials and $\mathcal{Q}_{2 k+1}^{n}$ is the subspace of $\mathcal{P}_{2 k+1}^{n}$ generated by odd polynomials (see [7]), or explicitly (see [5])

$$
N_{\min }^{C S}(2 k+1, n) \geq \begin{cases}\binom{n+k}{n}+\sum_{s=1}^{n-1} 2^{s-n}\binom{s+k}{s}, & \text { if } k \text { is odd } \tag{1.8}\\ \binom{n+k}{n}+\sum_{s=1}^{n-1}\left(1-2^{s-n}\right)\binom{s+k-1}{s}, & \text { if } k \text { is even. }\end{cases}
$$

[^0]: *Corresponding author. Email addresses: ranyu0602@sina.com (R. Yu), mzhl@dlut.edu.cn (Z. Meng), zxluo@dlut.edu.cn (Z. Luo)

