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HYBRID STRESS FINITE VOLUME METHOD FOR LINEAR

ELASTICITY PROBLEMS

YONGKE WU, XIAOPING XIE, AND LONG CHEN

Abstract. A hybrid stress finite volume method is proposed for linear elasticity equations.
In this new method, a finite volume formulation is used for the equilibrium equation, and a
hybrid stress quadrilateral finite element discretization, with continuous piecewise isoparametric
bilinear displacement interpolation and two types of stress approximation modes, is used for the
constitutive equation. The method is shown to be free from Poisson-locking and of first order
convergence. Numerical experiments confirm the theoretical results.
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1. Introduction

The Finite Volume Method (FVM) is a popular class of discretization techniques
for partial differential equations. One main reason for its increasing popularity is
that FVM combines the geometric flexibility of the Finite Element Method (FEM)
with the local conservation of physical quantities; see [27] for more interesting
properties of FVM. By these virtues, FVM has been extensively used in the fields
of Computational Fluid Dynamics (CFD), heat and mass transfer (see, eg [20, 22,
25, 30, 41, 44]).

In the context of Computational Solid Mechanics (CSM), however, the use of
FVM has not been further explored, whereas FEM plays the dominate role because
of its runaway success. Recently to simulate of multiphysical problems using flow,
solid mechanics, electromagnetic, heat transfer, etc. in a coupled manner, there is
increasing demand to discretize the solid mechanics using FVM [17].

Wilkins [47] made an early attempt of using FVM concept in CSM by us-
ing an alternative approximation to derivatives in a cell. Oñate, Cervera and
Zienkiewicz [29] showed that FVM could be considered to be a particular case
of FEM with a non-Galerkin weighting. In recent years, there has been much
effort in the development and numerical investigation of FVM in CSM (see, eg
[6, 9, 18, 19, 24, 40, 46]).

In this paper, we shall construct a coupling method of FVM and the hybrid
stress FEM [32, 36, 50] for linear elasticity problems and present a complete nu-
merical analysis for a priori error estimates. The idea follows from Wapperom and
Webster [45], where FEM and FVM was coupled to simulate viscoelastic flows, and
from Chen [12], where a class of high order finite volume methods was developed
for second order elliptic equations by combining high order finite element methods
and a linear finite volume method. We use hybrid stress FEM for the constitutive
equation, and FVM for the equilibrium equation by introducing piecewise constant
test functions in a dual mesh. We choose PS-stress mode [32] or ECQ4-mode [50]
to approximate the stress tensor, and use isoparametric bilinear element to approx-
imate the displacement. By doing so, our new method can inherit some virtues
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of hybrid stress FEM, e.g. the robustness with respect to Poisson locking. Mean-
while, the equilibrium equation holds locally (on every control volume). Note that
the governing equations for solid body and fluid mechanics are the same but only
differ in constitutive relations. Our method can be readily used to simulate the
coupling of fluid flows and solid body deformation.

We shall analyze our new method following the mixed FEM theory [8, 10]. To
the authors best knowledge, there are only handful rigorous analysis of mixed FVM
on general quadrilateral meshes for elliptic equations [13, 14, 15, 16] and no such
results for linear elasticity. Our discretization will result in a generalized saddle
point system in the form

(1)
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)

=
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0
f

)
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The analysis of the saddle point system (1) is much more involved than the symmet-
ric case B = C. In addition to the verification of the inf-sup condition for operators
B and C, we need to prove that their kernels match: dim(ker(B)) = dim(ker(C))
and a inf-sup condition of A on these two null spaces [8, 10]. Fast solvers for the
non-symmetric saddle point system (1) is also more difficult than the symmetric
case.

We shall overcome these difficulties by a perturbation of B to B̃ using the tech-
nique developed in [54]. We show that B̃ = DC with a symmetric and positive

definite matrix D. Therefore ker(B̃) = ker(C) and furthermore, by a scaling, (1)
becomes symmetric. Note that although our system is in the mixed form, the stress
unknowns can be eliminated element-wise and the resulting Schur complement is
symmetric and positive definite (SPD). We can then solve this SPD system ef-
ficiently by using multigrid solvers or preconditioned conjugate gradient method
with multilevel preconditioners.

In this paper, we use notation a . b (or a & b) to represent that there exists a
constant C independent of mesh size h and the Lamé constant λ such that a ≤ Cb
(or a ≥ Cb), and use a h b to denote a . b . a.

The rest of this paper is organized as follows. In section 2, we describe the model
problem, introduce the isoparametric bilinear element, and review the hybrid stress
FEM. Section 3 defines our hybrid stress finite volume method based on PS or
ECQ4 stress mode. Section 4 presents stability analysis. Section 5 derives a priori
error estimates. In the final section, we give some numerical results in support of
theoretical ones.

2. Preliminary

In this section, we present the model problem and introduce isoparametric ele-
ments and hybrid finite element methods.

2.1. A model problem. Let Ω ⊂ R2 be a bounded polygonal domain with bound-
ary Γ = ΓD ∪ ΓN , where meas(ΓD) > 0. We consider the following linear elasticity
problem

(2)















−div σ = f in Ω,
σ = Cǫ(u) in Ω,
u = 0 on ΓD,
σn = g, on ΓN

where σ ∈ R2×2
sym denotes the symmetric stress tensor field, u = (u, v)T ∈ R2 the

displacement field, ǫ(u) = 1
2 (∇u + (∇u)T ) the strain tensor, f ∈ R2 the body


