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Abstract

We show that there are bounded contractible domains in B", n > 3, on which the
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Dirichlet problem for the equation du -+ u == [} admit positive solutions. This re-

gult ,combining with the well-known nonexistence result of Pohoraev,implies that geome-

try of the domains plavs a crucial role in the solvability of the problem.

1. Introduction

Consider the Dirichlet problem
dut+u =0, >0 in@, u=0 onai 1 ]

where £2 is a bounded domain in R*,2=>3 and ;n=i. This problem is of interest be-

cause its solvability depends on the geometry and topology of the domain £2. It is per-
haps the simplest problem with this property. Pohozaev [ 6] proved that if 2 is star-
shaped with respect to some point,then (1. 1) admits no solutions. On the other hand,
as pointed out by Kazdan and Warner [ 5], (1. 1) has solutions on a standard annulus.
Recently, Coron [ 3] showed the problem is solvable on domains with ‘sufficiently
small holes’ and conjectured that the same result holds for any non-contractible do-
mains. More recently ,this conjecture has been proved to be true for n=23 by Bahri and
Coron [ 1]. For general n=>3,they proved if the homology group H,(£,2Z,) =0 for
some positive integer 4 then the problem has a solution.

Since the results of Bahri and Coron concern only the topology of £&4,the question
wether there exist contractible domains on which (1. 1) is solvable has become more in-
teresting. If such domains exist,since they have trivial topology their geometry should
be responsible for the existence of solutions. :

In is our aim in this note to show that there do exist contractible domains &2 for
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which (1. 1) has solutions. The idea that leads to the construction of such domains ig
actually quite simple. We Just observe that an annular domain can be ‘perturbed’ into a
contractible domain as follows. For simplicity we consider only standard annuli
A, ={s € F:0<s<|z| <1}
Let £=0 be small and define
C,={e=(5:@) ERXE '=RF:0<z,<1,|7d]| <e)

Then AMNC, is a contractible domain which may be considered as a perturbation of 4, in
the sense that the Sobolev quotient § behaves similarly on H}(A4,)%{0} and on H1(A4\
CIN{0} under a level set,provided ¢ is sufficiently small. Therefore , we can follow es-
sentially the same idea of Coron in [ 3] to show for certain values of & and #,¢ has crit-
ical points in Hy(ANC,)\{0},which correspond to the solutions of (1. 1) with B2=AN
.

Although our methods apply for a class of more general domains,; we will state and
prove our result only for the above domains 4 M\C,. The main result is as follows.

Theorem  There exists 5, (0,1) and for s€ (0,5,) there exists =(5) =0 such that if
& (0,550 and e (0,e(s)) then (1. 1) has a solution for Q= ANC..

In the next section we will recall some well-known facts and prove a few prelimi-

nary lemmas. The proof of the theorem will be given in Section 3.

2. Known Facts and Preliminary Lemmas

Let H,(£2) be the subspace of H'(R") consisting of functions which are supported
in &. That means » € Hy(2) will be considered as functions defined on R* with | R"\@
= (. Since £ is bounded we may take || Vufl, as the norm of ¥ & H}(£2) where
the LT(R")-norm and ¢=>0. Consider the Sgbolev qumtiént;

i |
Q) = Jlvaties yous
[J ju I"ciz]i"" ||H]!E

where p=2n/(n—2). (Here and in the sequel integrals are taken over R" unless other-
wise specified. )We will consider @ as a functional on H3(2)%\{0}. The following facts
are well known (see [2],[1]).

Let S=8,=inf{Q(u) :u€ Hy(2)\{0}}. Then S is a positive constant independent
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n-sphere. § can not be achieved by v € H (@) {0} for any bounded domain 2. Howev-
er § is achieved by a family of smooth functions on R" defined by
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of the domain £2. Indeed we know §=—(n— 2)aw*where ®, is the volume of the unit




