A FURTHER COMMENT ON THE COERCIVENESS THEORY FOR ELLIPTIC SYSTEMS[®]

Zhang Kewei

(Department of Mathematics, Peking University, Beijing 100871 CHINA)

(Received February 27, 1989)

In this note we exhibit a counterexample to show that quasilinear elliptic systems of the type

$$\int_{\Omega} (A_{ij}^{\alpha\beta}(x,u)D_{\alpha}u^{i}D_{\beta}v^{j} + b_{ij}^{\alpha}D_{\alpha}u^{i}v^{j} + c_{ij}^{\beta}u^{i}D_{\beta}v^{j} + d_{ij}u^{i}v^{j} +$$

$$+ f_{j}^{\beta}D_{\beta}v^{j} + g^{j}v^{j})dx = 0, \text{ for all } v \in H_{0}^{1}(\Omega; \mathbb{R}^{N})$$

$$(1)$$

do not satisfy, in general, the weak coerciveness condition, i. e., the Garding's inequality. This work is the continuition of [5].

Suppose $\Omega \subset \mathbb{R}^*$ is a bounded smooth domain, for $x \in \mathbb{R}^*$, $u \in \mathbb{R}^N$, and the maps $(x, u) \to A_{ij}^{a\beta}(x,u)$ are real valued C^{∞} functions for $\alpha, \beta = 1, \dots, n; i, j = 1, \dots, N(N, n > 1)$ satisfying

$$A_{ij}^{a\beta}(x_0, u_0) \xi^i \xi^j \eta_a \eta_{\beta} \ge c_0 |\xi|^2 |\eta|^2$$
 (2)

for every fixed $x_0 \in R^n$, $u_0 \in R^N$, all $\xi \in R^N$, $\eta \in R^n$, where c_0 is a positive consant, i.e., Legendre-Hadamard condition is satisfied. Let a(u,v) be the quadratic form of the left hand side of (1) for $u,v \in C_0^\infty(\Omega;R^N)$ and assume that $b_{ij}^a,c_{ij}^\beta,d_{ij} \in L^\infty(\Omega)$.

The problem is, under the above assumptions, if $\alpha(\cdot, \cdot)$ is weakly coercive, i. e., if there exist $\lambda_0 > 0$, $\lambda_1 \ge 0$, such that

$$a(u,u) \ge \lambda_0 \int_{\Omega} |Du|^2 dx - \lambda_1 \int_{\Omega} |u|^2 dx \text{ for all } u \in C_0^{\infty}(\Omega; \mathbb{R}^N)$$
 (3)

This type of problems is the content of Garding's inequality. It is known that (3) is satisfied provided $A_{ij}^{a\beta} = A_{ij}^{a\beta}(x) \in C^0(\overline{\Omega})$ (see [3]) and is not satisfied in general if $A_{ij}^{a\beta}(x) \in L^\infty(\Omega)$ (see [5]). In this note we will show that in the present situation where $A_{ij}^{a\beta} = A_{ij}^{a\beta}(x,u) \in C^\infty(\mathbb{R}^n \times \mathbb{R}^N) \cap L^\infty(\mathbb{R}^n \times \mathbb{R}^N)$, the answer of the problem is negative.

① We will adopt notations and conventions of [2]. In particular, we use the summation convention with Greek letters from 1 to n and Latin letters from 1 to N and N, n > 0.

In fact, (3) leads to the existence of weak solutions of (1) which could be considered as the steady state of general reaction-diffusion systems studied by Amann [1]:

$$\frac{\partial u}{\partial t} - \sum_{j=1}^{n} D_{j}(A(x, u)Du_{j}) = f(x, u, Du)$$

The Example

For $n, N \ge 2$, define

$$B(x,t) = \{ y \in R^*, |y - x| < t \}$$
, for $x \in R^*, t > 0$

and

$$D_{k} = B\left(p_{k}, \frac{1}{2^{k}}\right), \quad B_{k} = B\left(p_{k}, \frac{1}{2^{k+1}}\right), \quad D = B(0, 4), \quad E_{k} = B\left(p_{k}, \frac{1}{2^{k+2}}\right)$$

 $k=1,2,\cdots$, where

$$p_{k} = (s_{k}, 0, \dots, 0)$$

$$s_{k} = \begin{cases} 0 & k = 0 \\ 3\left(1 - \frac{1}{2^{k}}\right) & k = 1, 2, \dots \end{cases}$$

Choose $\xi \in C_0^{\infty}(\mathbb{R}^*)$ to satisfy

$$\xi=1$$
 on $B\Big(0,rac{1}{2}\Big)$, $\xi=0$ on $R^*\backslash B(0,1)$, $0\leq \xi \leq 1$, $|D\xi|\leq C$

Define

$$f_k(x) = \frac{1}{2^{k^2}} \int_{R^*} g_k(x - y) \chi E_k(y) dy$$

with

$$g_k(x) = 2^{k(k+2)}g(2^{k+2}x)$$
, $g(x) = h(x)/c$

where

$$h(x) = \begin{cases} \exp(1/(|x|^2 - 1)) & |x| < 1 \\ 0 & |x| \ge 1 \end{cases}$$

$$c = \int_{R^*} h(x) dx$$
 aracteristic function of R_1

and χE_k is the characteristic function of E_k .

It can be easily checked that $f_k(x) \in C_0^{\infty}(\mathbb{R}^n)$, $\sup(f_k) = B_k$, $f_k > 0$ on B_k . Now set

$$f(x) = \sum_{k=0}^{\infty} f_k(x)$$

then $f \in C_0^{\infty}(D)$ by our choice of f_{λ} 's.

Define a C^{∞} function $F: \mathbb{R}^1 \to \mathbb{R}^1$, such that F is nondecreasing, F(t) = 0 when $t \leq 0$; and F(t) > 0 when t > 0,

$$\lim_{t \to +\infty} F(t) = K + 2$$