GLOBAL BEHAVIOR OF POSITIVE SOLUTIONS OF ELLIPTIC EQUATIONS

narun poul soltogen-non dien Moties Li Jiayu A stelemen n ed M tol. Il merced T

(Department of Mathematics, Anhui University)
(Received September 19, 1988; revised December 28, 1988)

Abstract

Let M be a complete Riemannian manifold, and let Δ be the Laplacian on M. In this paper, we study the global properties of positive solutions of

$$\Delta U + b \cdot \nabla U + h U^a = 0$$

We mainly prove some theorems of Liouville type.

1. Introduction

A. Huber (6) and S. T. Yau (8) proved the non-existence of non-constant positive harmonic function on the complete Riemannian manifold with non-negative Ricci curvature. B. Gidas and J. Spruck (5) studied the properties of positive solutions of

$$\Delta U + hU^a = 0 \tag{1.1}$$

and

$$\Delta U + b \cdot \nabla U = 0 \tag{1.2}$$

We consider the properties of positive solutions of

$$\triangle U + b \cdot \nabla U + hU^o = 0 \tag{1.3}$$

where $b \in \mathcal{X}(M)$, $h \in C^2(M)$, $\alpha \in \mathbb{R}^+$.

In the following two results, we improve the results of Gidas-Spruck by relaxing their conditions on the growth of $|\nabla \log(h)|$, |b| and on the range of α .

Theorem A Let M be a complete Riemannian manifold of dimension n with non-negative Ricci curvature.

Suppose that $h \in C^2(M)$, $b \in \mathscr{K}(M)$ and $a \in R^+$ satisfy the following conditions

- (1) $\forall x \in M, h(x) \ge 0, \Delta h(x) + \nabla h(x) \cdot b(x) \ge 0$
- (2) the tensor field C_{*, a} |b|²g_{ij}+∇_ib_j is negative definite on M, where

$$C_{\star,\,a} = \frac{2}{n} + \frac{8}{n^2} \left(\frac{2}{n} - \frac{\alpha - 1}{\alpha} \right)^{-1}$$

(3) $|b| = o(\rho)$ as $\rho \to \infty$, where $\rho = \rho(x)$ is the geodesic distance from x to a fixed point x_0 ,

(4)
$$0 < \alpha < \frac{n+4}{n}$$
, if $n=2, 3$
 $0 < \alpha < \frac{n}{n-2}$, if $n \ge 4$

Then every non-negative solution of (1.3) is constant.

Theorem B Let M be a complete Riemannian manifold with non-negative Ricci curvature, and let $V_x(R)$ denote the volume of $B_x(R) = \{y \in M: \text{ dist } (y, x) \leq R\}$. Suppose that

(1) $V_x(R) \leq C_x R^{\beta}$, a redimensal bearing 8801 at mediant quel having

(2)
$$1 < \alpha < \frac{\beta+2}{\beta}$$
, $\lambda \ge 0$ is a constant.

If U(x) is a non-negative bounded solution of

We have a complete Kiernamin
$$0 = \lambda U + \lambda U + \lambda U^a = 0$$
 in solution and the Lagrangian 0 .

then $U(x) \equiv 0$.

In Theorem B we show that the range of α for non-existence of positive bounded solution of (1.4) depends on the growth of the volume of metric ball $B_x(R)$ and does not depend on the dimension of M.

On the other hand, H. Donnelly (3) studied the existence of bounded harmonic functions on complete Riemannian manifold with non-negative Ricci curvature outside a compact set. We generalized his result and prove that

Theorem C Let M be a n-dimensional complete Riemannian manifold, and let M_0 be a compact subset of M. Suppose that

- the Ricci curvature of M is non-negative outside M₀
- (2) the tensor field $\frac{1}{n}|b|^2g_{ij}+\nabla_ib_j$ is negative definite outside M_0 ,
 - (3) $|b| = o(\rho)$ as $\rho \to \infty$, where $\rho = \rho(x)$ is the geodesic disdtance from x to a fixed point x_0 .

Then the vector space of bounded solutions of (1.2) is finite dimensional.

The result shows that the conjecture of S. T. Yau, if M is uniformly equivalent to \overline{M} , \overline{M} is complete with non-negative Ricci curvature, then the vector space of bounded harmonic functions on M is finite dimensional, is true under some additional conditions.

2. The Proof of Theorem A

In this section, we mainly prove Theorem A and obtain the gradient estimates of positive solutions of (1.3).